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Abstract: This paper presents a coherent approach to the analysis of transportation network based on the concept of

Minimum Spanning Tree algorithm and Dijkstra’ s algorithm. Network connectivity is an important aspect of any transporta-

tion network, the role of connectivity is to provide a connection to possibly travel from point A to point B by using various

modes. The importance of node is, for example, greatly contribute to short connections between nodes, handle a large a-

mount of the traffic, generate relevant information. In order to quantify the relative importance of nodes, we use two algo-

rithm. The first one is Minimum Spanning Tree algorithm, we use it to find the shortest route between two point. The sec-

ond one is Dijkstra’ s algorithm we use it to find the route with lowest cost between two point.
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1 INTRODUCTION

Typically, transportation network means we make
the spatial network as real to consider vehicular move-
ment’ s structure. We first introduce network connectivi-
ty. The analysis of network connectivity can assist deci-
sion makers in identifying weak components, detecting
and preventing failures, and improving connectivity in
terms of decreased travel time, reduced costs, increased
reliability ,and accessibility. Then we discuss about Mini-
mum Spanning Tree algorithm. A minimum spanning tree
is a subset of the edges of a connected, edge-weighted
undirected graph that connects all the vertices together,
without any cycles and with the minimum possible total
edge weight. We introduce the possibility multiplicity, u-
niqueness, cut property of minimum spanning tree and
describe two major algorithm, Kruskal’s algorithm and
Prim’ s algorithm to analysis the transportation network.
Third, we discuss about Dijkstra’s algorithm. Dijkstra’ s
algorithm is an algorithm for finding the shortest paths be-
tween nodes in a graph, which may represent, for exam-
ple, road networks. We introduce the description, algo-
rithm, running time of Dijkstra’ s algorithm. Finally, we
describe the input data of two algorithm and get the pro-
gram results, we analyze the results and get out conclu-

sion.
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2 DESCRIPTION OF CONNECTIVITY

Connectivity typically means the transportation de-
gree of the connection degree. Simply,

High connectivity =high accessibility and low isolation

Low connectivity =low accessibility and high isolation

It is important when we try to find the shortest route,
since connectivity is a measures do not consider of dis-
tance.

If two locations are connected directly, we code with
al,else we code with a0. Then we need to reduce the
transportation network to matrix format within al and a0.
We assume all the distance as topology distance as 1. And

number the vertices and create a matrix( Fig. 1).

123 48 ¢7 ¢ 9 10

Fig.1 Matrix create

Then we directly coding connection as 1 and using
the matrix ( the lower half of matrix). And we simply copy
the lower half of the matrix to the rest part of matrix to

finish( Fig. 2).
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Fig.2  Matrix copy

We power the matrix to determine 2 steps linkage,
we will do the process for all the cells in matrix, then we
can get the results,the matrix now can be seen as all pos-
sible 2 step combination. And we added the two matrix,
the result matrix can represent the whole step routes ( one
and two steps). We will continue to power the matrix a-

gain and repeat the whole process(Fig.3).
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Fig.3  Process repeat

The diagonal represents all routes from a vertex back
to itself. Finally, we will power the matrix then add the
matrix again and again until we fill all the zero cells. The
time we need to make all empty cells full, that is named
Diameters.

Diameter =the fewest number of step needed to con-
nect the vertices which are the farthest apart topologically.

We can see the matrix now is includeall the connec-
tivity matrix, plus the all the total rows gives the connec-

tivity for every vertex( Fig.4).
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Fig.4 Matrix finished

Now we get the results for connectivity matrix results as
(1)7with 40 connections means the least accessible
node.

(2)1 with 224 connections means the most accessi-

ble node.

3 INTRODUCTION FOR MINIMUM
SPANNING TREE ALGORITHM

Minimum Spanning Tree has direct application in the
design of networks. It is used in algorithms approximating
the travelling salesman problem, multi-terminal minimum
cut problem and minimum-cost weighted perfect mate-
hing. Other practical applications are ; Cluster Analysis,
Handwriting recognition ,Image segmentation.

We know that a given graph will have some different
spanning trees, each edge will have a weight, that is the
number meaning the unfavorable. We familiar with get-
ting the weight to a spanning trees by calculate the all the
weights’ sum. Minimum Spanning Tree means the weight
of all the spanning trees is larger than a spanning tree’ s
weight.

In a given undirected graph G=(V,H) , the (u,v)
represents the edge between vertex u and vertex v, (u,v)
€ E,0w(u,v)means the weight of the edge. If we can find
T(TCE), then we can find the minimum value of
w(T), when:

w(T)= Y w(u,v)

(u,w)eT
This is a Minimum Spanning Tree. We can see that

every edge is labeled and the weight is roughly propor-
tional to length(Fig.5).

Fig.5 Minimum Spanning Tree

Now we introduce some properties of Minimum Span-
ning Tree.

(1) Possible multiplicity

We will find some different Minimum Spanning Tree
with the same weight having the same minimum number
of edges. If we have the vertices in the graph, every
spanning tree’ s with just one minus edges.

(2) Uniqueness

If we do not have the unique edge weights, then the
set of the weight of minimum spanning is unique. It is all

the same for all Minimum Spanning Trees.
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We know that sometimes will get more than one Min-
imum Spanning Tree. From Fig. 6 the two trees below the
graph show two different given graph’ s Minimum Span-

ning Tree’ s possibility.

Fig.6 Two different given Graph’s Minimum Spanning Tree’ s possibility

(3) Cut property

In the graph, every cut of C, assume the weight of
all of the edges of C is larger than the weight of an edges
of C, we can conclude that this edge belongs to all mini-
mum panning trees of the graph.

We can see that the Minimum Spanning Tree’ s cut
property. T is the only Minimum Spanning Tree of the
graph. Assume S={A,B,C,D} ,then V-S= {C,F}, then
we can get three possibilities of the edge of the cut(S, V-
S) ,it is edges BC,EC,EF of the original graph(Fig.7).

The cut:

1
OO/
S

Fig.7 Three possibilities of the edge

There are two famous algorithms for finding the Mini-
mum Spanning Tree.

(1) Kruskal’ s Algorithm

Klruskal’ s Algorithm builds the spanning tree by
adding edges one by one into a growing spanning tree.
Kruskal’ s algorithm follows greedy approach as in each
iteration it finds an edge which has least weight and add it
to the growing spanning tree.

Algorithm Steps :

(i) Sort the graph edges with respect to their
weights.

(ii) Start adding edges to the MST from the edge

with the smallest weight until the edge of the largest
weight.

(iii) Only add edges which doesn’ t form acycle
edges which connect only disconnected components.

The vertices are connected or not can be checked by
using DFS which starts from the first vertex is visited or
not. But DFS will make time complexity large as it has an
order of O( V+E)where O is the number of vertices, E is
the number of edges. So the best solution if “ Disjoint
Sets” -

Disjoint sets are sets whose intersection is the empty
set so it means that they don’t have any element in com-
mon.

Consider following example

In Kruskal’ s algorithm, at each iteration we will se-
lect the edge with the lowest weight. So, we will start
with the lowest weighted edge first i. e. , the edges with
weight 1. After that we will select the second lowest
weighted edge i. e. , edge with weight 2. Notice these two
edges are totally disjoint. Now, the next edge will be the
third lowest weighted edge 1. e., edge with weight 3,
which connects the two disjoint pieces of the graph. Now,
we are nol allowed to pick the edge with weight 4, that
will create a cycle and we can’t have any cycles. So we
will select the fifth lowest weighted edge i. e. , edge with
weight 5. Now the other two edges will create cycles so
we will ignore them. In the end, we end up with a Mini-
mum Spanning Tree with total cost 11 ( = 1 +2 + 3 +
5)(Fig.8,9).

Fig.9  Minimum Spanning Tree with total cost

Time Complexity ;

In Kruskal’ s algorithm, most time consuming opera-
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tion is sorting because the total complexity of the
Disjoint-Set operations will be O (ElgV) ,which is the o-
verall Time Complexity of the algorithm.

(2)Prim’ s Algorithm

Prim’ s Algorithm alsouse Greedy approach to find
the Minimum Spanning Tree. In Prim’ s Algorithm we
grow the spanning tree from a starting position. Unlike an
edge in Kruskal’s,we add vertex to the growing spanning
tree in Prim’ s.

Algorithm Steps :

(1) Maintain two disjoint sets of vertices. One contai-
ning vertices that are in the growing spanning tree and
other that are not in the growing spanning tree.

(ii) Select the cheapest vertex that is connected to
the growing spanning tree and is not in the growing span-
ning tree and add it into the growing spanning tree. This
can be done using Priority Queues. Insert thevertices,
that are connected to growing spanning tree, into the Pri-
ority Queue.

(iii) Check for cycles. To do that, mark the nodes
which have been already selected and insert only those
nodes in the Priority Queue that are not marked.

Consider the example below :

In Prim’ s Algorithm, we will start with an arbitrary
node (it doesn’t matter which one) and mark it. In each
iteration we will mark a new vertex that is adjacent to the
one that we have already marked. As a greedy algorithm,
Prim’ s algorithm will select the cheapest edge and mark
the vertex. So we will simply choose the edge with weight
1. In the next iteration we have three options, edges with
weight 2, 3 and 4. So, we will select the edge with
weight 2 and mark the vertex. Now again we have three
options, edges with weight 3, 4 and 5. But we can’t
choose edge with weight 3 as it is creating a cycle. So we
will select the edge with weight 4 and we end up with the
Minimum Spanning Tree of total cost 7 ( = 1 + 2 +4)
(Fig. 10).

Prim’s Algonthm

'y
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2

Fig. 10 Select the edge with weight 4, get total cost

Time Complexity :

The time complexity of the Prim’ s Algorithmis
O((V+E)lgV), because each vertex is inserted in the
priority queue only once and insertion in priority queue

take logarithmic time.

4 INTRODUCTION FOR DIJKSTRA’ S
ALGORITHM

Dijkstra’ s algorithm is an algorithm for finding the
shortest paths between nodes in a graph, which may re-
present, for example, road networks. The key purpose we
use Dijkstra’ s algorithm is to find the shortest paths be-
tween nodes in graph. Especially, Dijkstra’ s original va-
riant can be used to find the shortest path between two
nodes. Besides, there still has a single node with com-
mon variant call the source node, finding the shortest
paths from source to all other nodes can make the

shortest-path tree.
4.1 Description

Dijkstra’ s algorithm uses a data structure for storing
and querying partial solutions sorted by distance from the
start. While the original algorithm uses a min-priority
queue and runs in time @ ( | VvI]+|E| lg | v |),
(where VI is the number of nodes and |E| is the num-
ber of edges) , it can also be implemented in @ ( | V%)
using an array. This is asymptotically the fastest known
single-source shortest-path algorithm for arbitrary directed
graphs with unbounded non-negative weights.

Djikstra’ s algorithm can find the shortest path be-
tween a and b. We choose the vertex with lowest dis-
tance , compute the distance from it to other neighbor. If it

is similar, we update its distance(Fig. 11).

Fig. 11 The shortest path between a and b

4,2 Algorithm

In robot motion planning problem, we describe

Dijstra’ s algorithm search for finding path from the start
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node to goal node. From the figure 12, the open node
means that the tentative set and the filled node means the
visit one. And the color represent the distance between
node for filled node. More green means more distances.
Different direction nodes are uniformly, as a circular
wavefront in Dijstra’ s algorithm by using heuristic identi-
cally equal to 0.
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Fig. 12 The shortest path

4.3 Running time

Bounds of the running time Dijkstra’ s algorithm on a
graph with edges E and vertice V can be expressed as a
function of the number of edges, denoted | £ |, and the
number of vertices denoted | V| ,using big-O notation. The
complexity depends mainly on the data structure used to
represent the set (). In the following ,upper bounds can be
simplified because |E| is @( |VI?) for any graph, but
that simplification disregards the fact that in some prob-
lems other upper bounds on |E| may hold.

For any data structure for the vertexset (), the run-
- T,), where T, and

are the complexities of the decrease-key and extract-

ning time is in; @( 1E| « T, +|VI
Ty,
minimum operation in (), respectively. The simplest ver-
sion of Dijkstra’ s algorithm stores the vertex set () as an
ordinary linked or array, and extract-minimum is simply a
linear search through all vertices in () as an ordinary
linked list or array, and extract-minimum is simply a lin-
ear search through all vertices in (.

In this case, the running time is: @ ( 1 E1+1V|?) =
O(1VI?)

If the graph is stored as an adjacency list, the run-
ning time for a dense graph is:@(1VI* lg V)

For sparse graphs,that is,graphs with far fewer than

| V1? edges, Dijkstra’ s algorithm can be implemented

more efficiently by storing the graph in the form of adja-

cency lists and using a self-balancing binary search tree,
binary heap, pairing heap,or Fibonacci heap as a priority
queue to implement extracting minimum efficiently. To
perform decrease-key steps in a binary heap efficiently, it
is necessary to use an auxiliary data structure that maps
each vertex to its position in the heap, and to keep this
structure up to date as the priority queue () changes. With
a self-balancing binary search tree or binary heap,the al-
gorithm requires;: @ ( |E1+1VI Ig 1VI)

When using binary heaps, the average case time com-
plexity is lower than the worst-case. Assuming edge costs
are drawn independently from a common probability distri-

bution, the expected umber of decrease-key operation is
bounded by @( VI lg (1E1/IV1)), giving a total run-
ning time of ;O |EI+I1VI lg (1EI/IVI) lg IVI).

S RESULT BASED ON MINIMUM
SPANNING TREE ALGORITHM

We use Minimum Spanning Tree algorithm to solve
the problem. We will code up Prim” s Minimum Spanning

Tree algorithm.
5.1 Introduction input data

We use the text file describe an undirected graph
with integer edge( Fig. 13). For example, the first line of
the file is (1, 2, 6807) , indicates that the route between
point 1 and point 2 is cost 6807. And there is 500 points

in total.

13 18 5213
14 15 9331
15 16 -7753
16 17 4370
17 18 267

21 22 9473
22 23 9432
23 20 1412
24 25 7258

29 30 -2849

Fig. 13 Undirected graph

We do not assume that edge costs are positive, nor
should we assume that they are distinct. we task is to run
Prim’ s Minimum Spanning Tree algorithm on this graph.
We will report the overall cost of a Minimum Spanning
Tree—an integer, which may or may not be negative—in
the box window.

The graph is small enough that the straight forward
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O time implementation of Prim’ s algorithm should work
fine. For those of our seeking an additional challenge, we
try to implement a heap-based version. The simpler ap-
proach, which should already give us a healthy speed up,
to maintain relevant edges in a heap. The superior ap-
proach stores the unprocessed vertices in the heap.

The purpose of this program is to choose some parts

of the routes to lower the cost.
5.2 Program results

The result shows the whole routs we need to choose
(Fig. 14).

edge (379.378) cust -

edge(306,253) cost
edge(487,313) cost

[Xins-MacBook-Pro:MINIMAL SPAN TREE xindu$ python MinSpanTree.pyll

Fig. 14  The whole routs we need to choose

Forexample, edge (379,378) cost: —2951 means
that the route between point 379 and point 378 is neces-
sary and the cost for this route is =2951. We also get the
total minimum cost is —3612829.

6 RESULT BASED ON DIJKSTRA’S
ALGORITHM

We use Dijkstra’ s shortest-path algorithm to find the
shortest path.

6.1 Introduction input data

We use the undirected weighted graph file with 200
vertices labeled 1 to 200 with an adjacency list represen-
tation. Each node in the row are adjacent to that particular
vertex along with the length of that edge. For example ,we
look at the 6th row. It shows that it has “6” as the first
entry means that this row corresponds to the vertex la-
beled 6. The other part of this row shows (141,8200)
means that there is an edge between vertex 6 and vertex
141 and with length 8200. The rest parts of the row shows

that the vertex which adjacent to vertex 6, and indicates

the length of the corresponding edges( Fig. 15).

1 80,982 163,8164 170,2620

92,647 26,4122 140,546 11,1913 160,6461 27,7905 40,9047 150,2183 61,9146

159,7420 198,1724 114,508 104,6647 30,4612 99,2367 138,7896

169,8700 49,2437 125,2909 117,2597 55 6399

2 42,1689 127,9365 5,8026 17,9342 1,7%5 172,1438

34,315 30,2455 26, 2328 6,8847 11,1873 17, 5A09 157,8643 159,1397 142,7731
82,7908 93,

3 57,1239 101,3381
76,7729 122,9640

145,648 200,8021 173, 2069

43,7313 41,7212 91,2483 31,3031 167,3877 106, 6521
144,285 44,2165 6,9006 177,7097 19,7711
4 162,3924 70,5285 19,2490 72,6508 126,2625 121,7639
31,309 118,3626 99,9446 127,6808 135,7562 159, 6133 10,4769
52,6267 19,7536 78,858 75,7044 116,6771 149,619 107,4383
89,6363 54,313
5 200,400 12,1522
2,8026 90,8919 142,1195
147,1087 51,22
141,8200 98,5594 66,6627 159, 9500 143,3110 129,8525
118, 8547 88,2039 83,4949 165,6473 162, 6897 18¢,8021 123,13
176,3512 195,2233 22,7265 47,274 1321514 2,847 171,372
3,9006
7 156,7027 187,952 87,4976 121,8739
53,179 146,4823 165, 6619 125,5676
Ba 4061

25,3496 23,9432 64,7836 56,8262 120,1862
81,2469 182,8806 17,2514 83,8407 146,5308

56,6616 10,2904 71,8206
27,4888 63,9920 156, 9931

11257 189,2780
71 5829 27, ]4!!3 69,8815 138,55 168,2076 '
48,3193 72,7308 24,8434 B7,2833 25,3949 175,1022 177,8508
17,7002 72,794 150,4539 190,3613
63,1753 199,70 131,700 76,9340 70,2 139,870l

58,4708 26,8342 199,1918 31,3987 35,3160

73,4528 28,9996 17,3535
152,1087 115,7827
95,9480 36,5284 166,8702

Fig. 15 The length of the corresponding edges

We plan to compute the shortest-path distance be-
tween 1 and all the other vertex and treated it as the
source vertex. If we can get no path between a vertex 1
and vertex v, we will set the distance between the shor-

test-path to be very large.
6.2 Program results

The result shows the shortest path for every 200
points to point 1. For example, ((22,132,25,143,188,
145,1) 4828) means that if point 1 need to be connected
to point 22 , it should be from poin (145,188,143 ,25,
132,22) one by one based on our algorithm to make sure
the shortest path and the required distance is 4828 ( Fig.
16).

{1, 1009000)
4ns-MacBook-Pro:Shortest Path xindu$ python ShortPath.py

; oo 85,109, 318, 11, 2973)

., 51, 181, 158, 134, 92, 1], 2525)
, 123, 128, 92, 1], 2818)
B 53 85 119 114, 1], 2599)

80,

. 134, 92, 1], 1581)

. 67, 200, 154, 119, 80, 1],

, 135, 134, 92, 1], 2394)

- 131,°9,°76, 92, 1], 1883)

. 163 61, 153 87 119, 86, 1], 2942)

) 154, 119, 89, 11, 2284)

. 80, 1], 1044)

. 92, 1], 2351)

. 193, 46, 123, 128, 92, 11, 3630)
, 132, 25, 143, 108, 145, 1], 4928)

Fig. 16  The shortest path and the required distance

7 SUMMARY AND CONCLUSION

In order to analysis the transportation network, we
use two algorithms to help us fulfill two major purpose.
To decrease the cost as most as possible, we use Mini-
mum Spanning Tree algorithm. To find the shortest path
from point to point, we use Dijkstra’ s algorithm. Connect
to transportation network analysis, we believe that these
tows algorithms helps. Simply, we use Minimum Span-

ning Tree algorithm when we need to consider the cost to
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connect two cities. And we use Dijkstra’ s algorithm when

we care about the length of path mostly.
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