PDF下载 分享
[1]毛开银,赵长名,何 嘉.基于XGBoost的10 m风速订正研究[J].成都信息工程大学学报,2020,35(06):604-609.[doi:10.16836/j.cnki.jcuit.2020.06.004]
 MAO Kaiyin,ZHAO Changming,HE Jia.A Research for 10 m Wind Speed Prediction based on XGBoost[J].Journal of Chengdu University of Information Technology,2020,35(06):604-609.[doi:10.16836/j.cnki.jcuit.2020.06.004]
点击复制

基于XGBoost的10 m风速订正研究

参考文献/References:

[1] 肖寅.基于WRF模式的短期风速预测及订正方法研究[D].南京:南京信息工程大学,2016.
[2] N D Bokde,A Feijóo,N Al-Ansari,et al.A Comparison Between Reconstruction Methods for Generationof Synthetic Time Series Applied to Wind Speed Simulation[J].IEEE Access,2019,7:135386-135398.
[3] R L Kashyap.Optimal choice of AR and MA parts in autoregressive moving average models[J].IEEE Trans.Pattern Anal.Mach.Intell.,1982,2(2):99-104.
[4] G P Zhang.Time series forecasting using a hybrid ARIMA and neural network model[J].Neurocomputing,2003,50:159-175.
[5] Aaron M R Culver,Adam H Monahan.The Statistical Predictability of Surface Winds over Western and Central Canada[J].Journal of Climate,2013,26(21):8305-8322.
[6] Monahan,A H,The Gaussian Statistical Predictability of Wind Speeds[J].Climate,2013,26:5563-5577.
[7] Galanis,George,Papageorgiou,et al.A hybrid Bayesian Kalman filter and applications to numerical wind speed modeling[J].Journal of Wind Engineering & Industrial Aerodynamics,1997,56(167):1-22.
[8] 孙全德,焦瑞莉,夏江江,等.基于机器学习的数值天气预报风速订正研究[J].气象,2019,45(3):426-436.
[9] Gang Zhang,Lei Zhang,Tuo Xie.Prediction of short-term wind power in wind power plant based on BP-ANN[C].2016 IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),Xi’an,2016:75-79.
[10] J Jin,B Wang,M Yu,et al.The short-term wind speed prediction based on HF-EMD and BP neural network model[C].2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA),Siem Reap,2017:489-494.
[11] Gang Zhang,Lei Zhang,Tuo Xie.Prediction of short-term wind power in wind power plant based on BP-ANN[C].2016 IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),Xi’an,2016:75-79.
[12] A Prasetyowati,D.Sudiana,H Sudibyo.Comparison Accuracy W-NN and WD-SVM Method In Predicted Wind Power Model on Wind Farm Pandansimo[J].2018 4th International Conference on Nano Electronics Research and Education(ICNERE),Hamamatsu,Japan,2018:1-4.
[13] H Xue,L Li,K Chao,et al.Short-Term Wind Power Prediction Based on Improved Chicken Algorithm and Support Vector Machine[J].2018 International Symposium on Computer,Consumer and Control(IS3C),Taichung,Taiwan,2018:137-140.
[14] 张颖超,肖寅,邓华.基于ELM的风电场短期风速订正技术研究[J].气象,2016,42(4):466-471.
[15] D Kang,Y Su,X Liu,et al.Short-term wind speed forecasting in wind farm based on C-C and ELM[C].2017 3rd IEEE International Conference on Computer and Communications(ICCC), Chengdu,2017:2832-2836.
[16] X Luo.Short-Term Wind Speed Forecasting via Stacked Extreme Learning Machine With Generalized Correntropy[J].in IEEE Transactions on Industrial Informatics,2018,14(11):4963-4971.
[17] 邓华,张颖超,顾荣,等.基于PCA-RBF的风电场短期风速订正方法研究[J].气象科技,2018,46(1):10-15.
[18] Y Zhang,B Chen,Y Zhao,et al.Wind Speed Prediction of IPSO-BP Neural Network Based on Lorenz Disturbance[J].in IEEE Access,2018,6:53168-53179.
[19] W Teng,X Wang,Y Meng,et al.An improved support vector clustering approach to dynamic aggregation of large wind farms[J].in CSEE Journal of Power and Energy Systems,2019,5(2):215-223.
[20] Chen T,Tong H.Higgs boson discovery with boosted trees[C].International Conferenceon High-energy Physics & Machine Learning.2014.
[21] Yang A,Zhang J,Pan L,et al.Enhanced Twitter Sentiment Analysis by Using Feature Selection and Combination[C].2015 International Symposium on Security and Privacy in Social Networks and Big Data(SocialSec).IEEE,2015.

相似文献/References:

[1]李宝林,周 坤,李仕伟.一种基于M-Bisearch的最大频繁项集挖掘算法研究[J].成都信息工程大学学报,2016,(05):463.
 LI Bao-lin,ZHOU Kun,LI Shi-wei.Research on Mining Algorithm of Maximal Frequent Itemsets based on M-blsearch[J].Journal of Chengdu University of Information Technology,2016,(06):463.
[2]唐雨奇,李则辰,杨东东,等.基于机器学习的面部运动神经传导检查数据的研究及应用[J].成都信息工程大学学报,2020,35(05):519.[doi:10.16836/j.cnki.jcuit.2020.05.007]
 TANG Yuqi,LI Zechen,YANG Dongdong,et al.Research and Application of Facial Motor Nerve Conduction Examination Data based on Machine Learning[J].Journal of Chengdu University of Information Technology,2020,35(06):519.[doi:10.16836/j.cnki.jcuit.2020.05.007]

备注/Memo

收稿日期:2019-12-13 基金项目:国家重大专项资助项目(2017YFG502203); 国家重点研发资助项目(2019YFG0212); 四川省科技计划资助项目(2019YFG0212); 四川省科技计划资助项目(2018GZ0814)

更新日期/Last Update: 1900-01-01