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Abstract:In this paper, we propose a modied proximal point algorithm for finding a common element of the set of fixed

points of a single-valued nonexpansive mapping, the set of fixed points of a multivalued nonexpansive mapping, and the set

of minimizers of convex and lower semicontinuous functions. We obtain the strong convergence to a common element of three

sets in CAT(0) spaces.
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1 Introduction

A metric space (X,d) is a CAT(0) spacem if it is
geodesically connected and each geodesic triangle is at
least as 'thin’ as its comparison triangle in R*. Let D be a
nonempty closed subset of a CAT(0) space X,and let T
D—D be a mapping. The set of fixed point of T is deno-
ted by F(T), thatis, F(T)= {x e D:x=Tx}.

The useful inequality of CAT(0) space is (CN) ine-
quality'®’ | that is, if z,x,y are some points in a CAT(0)

X

space and if is the midpoint of geodesic segment

Y
2
[x,y],then the CAT(0) inequality implies

X

1 1 1
&z 570 S5 d (2 x) 4 d ()~ d (20y)

(CN)

which is equivalent to the following'*’
(2, ax@(1-1)y) <A (z,2) +(1-2)d*(z,y) -A(1-
Md(xy), (CN)
for any A € [0,1],where Ax@®(1-1)y denotes a unique
point in [,y ]. Moreover, if X is a CAT(0) space and
x,y€ X, then for any A € [0,1],there exists a unique
point Ax@(1-A)y e [x,y] such that

d(z,Ax@®(1-1)y) <Ad(z,x)+(1-1)d(z,y), (1)
for any ze X.

In the past, there has been many iterative methods
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that are constructed and proposed to find approximate
fixed points of nonlinear mappings. The S-type iterative
methods is defined as follows :

y,=(1-o, )z, +a,Tx, ,

% =(1-B,) Tx,+B,Ty,,
for each n e N, where {a,} and {B,]| are real sequences
in(0,1).

The proximal point algorithm, which was first intro-
duced by Martinet, is known for its theoretically nice con-
vergence properties.

Bacak "’ introduced proximal point algorithm into ge-
odesic metric spaces of nonpositive curvature, that is,
CAT(0) spaces. For any initial point x, in a CAT(0)

space X, a sequence |{x,| generated by
%, =argmin[ f(y) +2%nd2(y,xn) 1,

where A, >0 for all ne V.
For all A >0, define the Moreau-Yosida'® resolvent
of fin a complete CAT(0) space X as follows
Ji(x)= ar§gin[f(y)+2%d2(y,x) l.
Let f:X— (- ,+% ) be a proper convex and lower
semi-continuous function. The set F(J,) of fixed points of
the resolvent associated with f coincides with the set
ar)gglxinf(y) of minimizers of f,which can be found in[7].

Also for any A>0,the resolvent J, of f is nonexpansive* .

In 2017, Suthep Suantai'®’ have put forward the

manner as follows
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z, —drgmm[f(y) +7d2(y,xn) 1,

y,=B,z,D(1-8 ) w, ,w, €Sz, ,
a=ax,®(1-a,)Tz,,¥YneN,
where T is a smgle—valued nonexpansive mapping, S is a
multi-valued nonex-pansive mapping. {\, | is a
such that A, =A>0 for all n=

Stimulated and inspired by the work of the mathe-

sequence

1 and some A.

matics researchers, in this paper, we use S-type iteration
methods and come up with a new modified algorithm that
is from [ 9 ]. Research its convergence, some results that

we obtained improved and extended the results of [9].

2 Preliminaries

This section collects some lemmas, definitions,
which will be used in our main results in the next sec-
tion.

Definition 1"/ Let CB(D),CC(D) and KC(D)
denote the families of nonempty closed bounded subsets,
closed convex subsets and compact convex subsets of D,
respectively. The Pompeiu-Hausdorff distance on CB(D)
is defined by

H(A,B)= max | sup dist(x,B) ,?gg dist(y,A) | for
A,BeCB(D),
where dist(x,D)=inf{d(x,y):y e D} is the distance
from a point x to a subset D. Let S be a multi-valued
mapping of D into CB(D).

An element x € D is called a fixed point of S if x €
Sx. The set of all fixed points of S is denoted by F(S),
that is,F(S)= {x e D:x e Sx}.

Definition 2"’ A single-valued mapping T: D—D
is said to be

(1) nonexpansive if d(Tx,Ty) <d(x,y) for all x,y

eD;
(2) semi-compact if for any sequence {x,| in D
such that
HIHLI d(x,,Tx,)=0,
there exists a subsequence {x, | of {x,| such that {x, |

converges strongly to a point p in D.
Definition 3"’

(D) is said to be
(1) nonexpansive if H(Sx,Sy) <d(x,y) for all x,y

A multi-valued mapping S:D—CB

eD;

b

(2) hemi-compact if for any sequence {x,| in D
such that
limdist (x

n—o

there exists a subsequence {x, | of |
J

no an ) = 0 ’
x, | such that {xnj}
converges strongly to a point p in D.

Let (X,d) be a complete CAT(0)

space and f: X—( —o ,+% ) be a proper convex and low-

Lemma 1'*

er semi-continuous function. Then the following identity

holds:
INE J( "‘Jﬂ@ j Ve X,Asu>0.

Lemma 2'"' Let (X,d) be a complete CAT(0)
space and f: X— (- ,+% ) be a proper convex and low-
er semi-continuous function. Then, for all x,y € X and A

>0, the following inequality holds

1

Sl (L) =oed? (o) e d (e, ) 4 () <
),

where J, is a Moreau-Yosida resolvent of f.

3 Main results

In this part, we go to prove our main theorems.
Theorem 1 Suppose that the following conditions are sat-
isfied :

(1) Let D be a nonempty closed convex subset of a
complete CAT(0) space X;

(2) Let T: D—D be a single-valued nonexpansive
mapping, S:D—CB(D) be a multi-valued nonexpansive
mapping, and f:D—( - ,+% ) be a proper convex and
lower semi-continuous function

(3)Suppose that 2=F(T) NF(S) ﬂar}gerrll)in f(y)
is nonempty and S = {q} for all g €£2;

(4) Let {a,},{B,!,{v,! be sequences in (0,1)
with O<ae =« ,B,,y,<b<1 for all n € N and for some a,
and {A, | is a se-

quence such that A, =A>0 for all n € N and some A

b are positive constants in (0,1),

(5) Suppose that J, is semi-compact or T is semi-
compact or S is hemicompact.
For x, € D, the sequence {x,| generated by the al-

gorithm as follows

z —drgmln[f(y)+ d (y,x,) ],

tn:ynzrl@<1_yn)wn ’wneszn5
¥, =B,x,®(1-,)Tt,,
X i1 =Q, Tx @(1 an)Ty,,, VnENs
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then the sequence {x,} converges strongly to a point
in (.
Proof. This proof will be divided into five steps.

(1) Let ¢ € L2 Then we have Tg=q € Sq and f(q)
<f(y), for all ye D. It follows that

f(q)+fd2(q q>\f(y)+

Hence, q=]A" q for all ne N. Slnce z,=J, x

d (y,q),VyeD.

it follows

(4

by nonexpansiveness of J, that
d(zn,(I>=d(]A,,xn 9]A,lq)sd(xn ,(]) (3)
For q € {2, by virtue of Sqg=1{q} and (1),
(l(tn’q):(l()‘ynzn)é{g(1_’),11)1'011711S
Y,d(z,,q)+(1-y,)d(w,,q) <
erd(zyzaq)""(l_')/n)diSt(anZn) =
'}’nd(zna(])+(1—'}’71>H(S‘],SZ")§
d<zn’q>$
d(x,,q). (4)
By (4), we have
d(yn 5q):d(Iann®(1_Bn)Ttn ’q>$
B,d(x,,q)+(1-B,)d(Tt,,q) <
B.d(x,,q)+(1-B,)d(t,,q) <
Bnd(xn ’q>+(]‘_ﬁn>d<xn ’q):
d(xn ’q) (5>

it shows that

and we get
d(%,,,,q)=d(e,Tx,D(1-a,) Ty, ,q) <
a,d(Tx,,q)+(1-a,)d(Ty,,q) <
a,d(x,,q)+(1-a,)d(y,,q) <
d(x,q). (6)
Therefore, by (6 ), we obtain that the sequence
{d(x,,q)} is decreasing and bounded. So, the limit
HIHE d(x,,q) exists for all g € (2.
(ii) Let
lim d(x,,q)=c=0. (7)

n—o

By lemma 2, we have
1
s @ (ana) - fdz(xn,q)+7d2(zn, %) <f(q) -

f(z,).
Since f(q) <f(z,) for all ne N, we get
d*(z,,%,) Sd’(x,,9)~d’(z,,9) (8)
By (3), we obtain
I}Lmsup d(z",q)<hmsup d(x,,q)=c. (9)
Let a,=1-(1-a,) and by (6), we have
(1-a,)d(x,,q) sd(x,,q)-d(x,,,,q)+
(1-a,)d(y,,q)

and

1
d(xn ,(1) $_7[d(xn #])‘d(xm ,(I)]+d(yn ,(1) =
1 b[d(xn,(ﬁ d(xmlsq)]"'d(yn’q)
This implies that

[d(x” ,(]) d(xml ’q) :I

c¢=lim inf d(x, ,q) <hm inf{—

n—ro

,_

d<yn ’q) % s
lim inf d(y,,q),

n—o

that is,
c=lim inf d(x,,q) <11m inf d(y,,q).

n—ro

Similarly, by (5) and we get
lin sup d(y, .p) <lim sup d(x, .q)=c

n—o

Therefore ,
lim d(y,.q)=c (10)
Furthermore , by the inequality (5), we also have
d(y,,q) <B,d(x,,q)+(1-B,)d(1,,q)
and let 8,=1-(1-8,),
(1-B8,)d(x,,q) <d(x,,q)-d(y,,q)+(1-B,)d(t,,q),

which can be rewritten as

d(x,,q) < 1d(x,,q)=d(y,,q)+(1-6,)d(1,,9) | <

similarly we have

1 ,3n
g[d(xn J])‘d(yuﬂ)]*'d(tn ,Q)-
It implies that

lim inf d(x, ,q)

n—o

d(t,,q) |
This together with (7) and (10), we obtain
lim 1nfd(x",q)—c\hm inf d(t,,q). (11)

n—o

Also from (4), we have
lim sup d(t,,q) <hrn sup d(x,,q)=c.

n—o

By (11),

.. 1
$}HB 1nf{§[d(x,,,‘ﬁ—d<yn"])}+

it shows that

lim d(¢,,q)=c. (12)
By (4) and (12), we get

c=lim inf d(t,,q) <hm inf d(z,,q).

n—o

From the above and (9), we obtaln

nlirg d(z,,q)=c. (13)
By (7),(8) and (13), it shows that

lim d(x,,z,)=0. (14)

Also from the inequality (CN" ) ,Sqg={q} and (3),we

!L’ n

have
d*(t,,q)=d*(v,2,D(1-y,)w, ,q) <
v, d(z,,q) +(1-y, ) d*(w, ,q)-y,(1-y,) d*(z, ,w,) <
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v, d’(z,,q)+(1~y,) dist*(q,82,) =y, (1-y,) d*(z,,w,) <
v, d’(z,,9) +(1=y, ) H'(S¢,8z,) =y, (1-y, ) d*(z, ,w0,) <
v, d’(z,,9) +(1=y, ) d*(z,,¢)~y,(1~y, ) d’(z, w,) <
& (x,,q)=y,(1=y,)d’(z,,w,) (15)
By (4) we get
(y,,q)=d(Bx,®(1-B)Tt,,q) <
B4 (x,,q)+(1-B,)d*(Tt,,q) -B,(1-B,)d (x,,Tt,) <
B4 (x,,q)+(1-B,)d"(t,,9)-B,(1-B,) d*(x,,Tt,) <
d*(x,,q)-B,(1-B)d*(x,,Tt,). (16)
Similarly, by (5) we have
d*(%,,9)= d*(a,Tx,®(1-a,) Ty, ,q) <
a,d (Tx,,q)+(1-a,)d(Ty,,q) -a,(1-a,)d (Tx,,
Ty,) <
andz(xn,q)+(1—an)dz(yn,q)—an(l—a")dz(Txn,Ty”) =
d*(%,,q)-o,(1-a,)d*(Tx,,Ty,). (17)
Because of O0<a<a,,B,,y, <b<l, this together (15)
with (16) and (17) shows that
0=y, (17, ) (2, o0,) <d* (2, .q) (1, .q)—0
(n—o ),
0<B,(1-B,)d(x,,Tt,) <d*(x,,q) ~d’(y,,q4) >0
(n—o ),
0<a,(l-a,)d’(Tx,,Ty,) <d(x,,q)-d(x,,, ,q)
—0(n—o ),
Indeed, from (7),(10) and (12), we obtain that
lim d(z,,w,)= }i{g d(x, ,Tt”):}i{g d(Tx,,Ty,)=0.

(18)

no no

Since t,=vy,z,(1-y,)w,, we have
d(t,,x,)=d(y,z,®(1-y,)w,,x,) <

v,d(z, ,x,)+(1-y, )d(w,,x,) <

v, d(z, ,x,)+(1-y, ) {d(w,,z,)+d(z, ,x,) |

—0(n— ). (19)
By nonexpansiveness of 7', and this together (18) with
(19) shows that

d(x,,Tx,) <d(x,,Tt,)+d(Tt,,Tx,)+d(Tx,,Ty,) <
d(x,,Tt,)+d(t,,x,)+d(Tx,,Ty,)
—0(n—w ).
Immediately, we get
lim d(x,,Tx,)=0.

n—o

(iii) Because of the nonexpansiveness of S, from (14)

and (18), we get

dist(x, ,S%,) <d(x,,z, ) +dist(z,,Sz, ) +H(Sz, ,5x,) <
d(x,,z,)+dist(z,,5z,) +d(z, ,x,) <
2d(x,,z,)+d(z, ,w,)
—0(n—wx ).

n

This implies that
lim dist(x

n—ro

Sx,)=0.

(iv) By virture of A, >A>0, lemma 1 and nonexpansive-

ness of J,, and z,=J, x,, we have

d(xn "]}\xn) sd(xn ’Zn) +d(zn "]/\xn> =
d(‘xn, ,Z" ) +d(']Anzlz ’]Axil):

A=A A
d(xn 52 ) +d(])\(TJ)Lnxll @rxn) ’])\xn) =

A,-A

n A,
Zn)+ Y d(,])‘nxn,x")+7nd(xn,xn)=

n

d(x

no

(2-%)61(96 2)0(ne0 ).

no

Hence, we get

llm d(xn ’]Axn ) = O‘

(v) Here, we assume that the mapping S is hemi-com-
pact. By the step (iii) ,we get }LILI dist(x,,Sx,)=0. By
the hemi-compactness of S and we have htat there exists a
subsequence {u,} of {x,}, which converges strongly to
an element ¢ in D. From the front (ii)-(iv), we obtain
that

,’lirg d(u,,Tu,)=0, 31:2 dist(u, ,Su,)=0 and

lim d(u,,J,u,)=0.

n—o

no

It follows by the nonexpansiveness of T, and by the non-

expansiveness of J, that ¢=Tq=J,q, we get
qgeF(T)NF(J,)=F(T) ﬂarggl}inf(y). (20)

By the nonexpansiveness of S, we havé

dist(q,Sq) <d(q,u,)+dist(u,,Su,) +H(Su,,S,) <

2d(q,u,)+dist(u,,Su, ) —0(n—w ).
It shows that dist(¢q,Sq) = 0. This implies that ¢ € Sgq.
Therefore, we get ¢ € F(S). By (20), we have
geF(T)NF(S) ﬂar)ggrginf(y):().

no

no

According to the double extract subsequence principle,
we conclude that the sequence {x,} strongly converges to
a point g in {2

Since every multi-valued mapping S:D—CB(D) is
hemi-compact if D is a compact subset of X. Then the
following result can be obtained from Theorem 1 immedi-
ately.
Theorem 2 Let D be a compact convex nonempty subset
of a complete CAT(0) space X. The sequence {x,| gen-
erated by algorithms (2) satisfied the conditions (2) —
(4) of Theorem 1. Then the sequence {x,| converges

strongly to a point in (2.
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