PDF下载 分享
[1]张孝峰,陶宏才.基于BERT的多信息融合方面级情感分析模型[J].成都信息工程大学学报,2024,39(04):397-403.[doi:10.16836/j.cnki.jcuit.2024.04.001]
 ZHANG Xiaofeng,TAO Hongcai.Aspect-Level Sentiment Analysis Model based on BERT with Multi-Information Fusion[J].Journal of Chengdu University of Information Technology,2024,39(04):397-403.[doi:10.16836/j.cnki.jcuit.2024.04.001]
点击复制

基于BERT的多信息融合方面级情感分析模型

参考文献/References:

[1] Tang D,Qin B,Liu T.Learning semantic representations of users and products for document level sentiment classification[C].Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing,2015:1014-1023.
[2] Yang Z,Yang D,Dyer C,et al.Hierarchical attention networks for document classification[C].Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics:human language technologies,2016:1480-1489.
[3] 汤凌燕,熊聪聪,王嫄,等.基于深度学习的短文本情感倾向分析综述[J].计算机科学与探索,2021,15(5):794-811.
[4] Wang H,Liu B,Li C,et al.Learning with noisy labels for sentence-level sentimentclassification[C].Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:6286-6292.
[5] Baccianella S,Esuli A,Sebastiani F.Sentiwordnet 3.0:an enhanced lexical resource for sentiment analysis and opinion mining[C].International Conference on Language Resources and Evaluation,2010:2200-2204.
[6] Cambria E,Poria S,Hazarika D,et al.SenticNet 5:Discovering conceptual primitives for sentiment analysis by means of context embeddings[C].Proceedings of the AAAI conference on artificial intelligence,2018:1795-1802.
[7] Mohammad S,Turney P.Emotions evoked by common words and phrases:Using mechanical turk to create an emotion lexicon[C].Proceedings of the NAACLHLT 2010 workshop on computational approaches to analysis and generation of emotion in text,2010:26-34.
[8] 郁圣卫,卢奇,陈文亮.基于领域情感词典特征表示的细粒度意见挖掘[J].中文信息学报,2019,33(2):112-121.
[9] Hochreiter S,Schmidhuber J.Long Short-Term Memory[J]. Neural Computation,1997,9(8):1735-1780.
[10] Socher R,Perelygin A,Wu J Y,et al.Recursive deep models for semantic compositionality over a sentiment treebank[C].Proceedings of the 2013 conference on empirical methods in natural language processing,2013:1631-1642.
[11] Tang D Y,Qin B,Feng X C,et al.Effective LSTMs for Target-Dependent Sentiment Classification[C].Proceedings of 26th International Conference on Computational Linguistics,2016:3298-3307.
[12] Kim Y.Convolutional Neural Networks for Sentence Classification[C].Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1746-1751.
[13] Zhang C,Li Q C,Song D W.Aspect-based Sentiment Classification with Aspect specific Graph Convolutional Networks[C].Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:4568-4578.
[14] Bahdanau D,Cho K,Bengio Y.Neural machine translation by jointly learning to align and translate[J].arXiv preprint arXiv:1409.0473,2014.
[15] Wang Y,Huang M,Zhu X,et al.Attention-based LSTM for aspect-level sentiment classification[C].Proceedings of the 2016 conference on empirical methods in natural language processing,2016:606-615.
[16] Ma D H,Li S J,Zhang X D,et al.Interactive attention networks for aspect-level sentiment classification[C].Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:4068-4074.
[17] Fan F,Feng Y,Zhao D.Multi-grained attention network for aspect-level sentiment classification[C].Proceedings of the 2018 conference on empirical methods in natural language processing,2018:3433-3442.
[18] Mikolov T,Sutskever I,Chen K,et al.Distributed representations of words and phrases and their compositionality[C].Proceedings of the 26th International Conference on Neural Information Processing Systems,2013:3111-3119.
[19] Pennington J,Socher R,Manning C.GloVe:Global Vectors for Word Representation[C].Proceedings of the 2014 conference on empirical methods in naturallanguage processing(EMNLP),2014:1532-1543.
[20] Devlin J,Chang M W,Lee K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C].Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics,2019:4171-4186.
[21] Song Y W,Wang J,Jiang T,et al.Attentional encoder network for targeted sentiment classification[J].arXiv preprint arXiv:1902.09314,2019.
[22] Zeng B,Yang H,Xu R,et al.LCF:A Local Context Focus Mechanism for Aspect-Based Sentiment Classification[J].Applied Sciences,2019,9(16):3389.
[23] Phan M H,Ogunbona P O.Modelling context and syntactical features for aspect-based sentiment analysis[C].Proceedings of the 58th annual meeting of the association for computational linguistics,2020:3211-3220.
[24] Wang K,Shen W,Yang Y,et al.Relational Graph Attention Network for Aspect-based Sentiment Analysis[C].Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:3229-3238.
[25] Zhang Z,Zhou Z,Wang Y.SSEGCN:Syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C].Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.2022:4916-4925.
[26] Pontiki M,Galanis D,Pavlopoulos J,et al.Semeval-2014 task 4:Aspect based sentiment analysis[C].The 8th International Workshop on Semantic Evaluation,2014:27-35.
[27] Dong Li,Wei F R,Tan C Q,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C].The 52ndAnnual Meeting of the Association for Computational Linguistics,2014:49-54.

备注/Memo

收稿日期:2024-03-15
基金项目:国家自然青年基金资助项目(61806170)

更新日期/Last Update: 2024-08-31