PDF下载 分享
[1]班慧琳,李中志,李斌勇,等.基于FRBPSO-RBF神经网络的污水BOD5软测量方法[J].成都信息工程大学学报,2024,39(04):416-421.[doi:10.16836/j.cnki.jcuit.2024.04.004]
 BAN Huilin,LI Zhongzhi,LI Binyong,et al.Soft Sensing Method of BOD5 in Sewage based on FRBPSO-RBF Neural Network[J].Journal of Chengdu University of Information Technology,2024,39(04):416-421.[doi:10.16836/j.cnki.jcuit.2024.04.004]
点击复制

基于FRBPSO-RBF神经网络的污水BOD5软测量方法

参考文献/References:

[1] 张钧,杨文武.水和废水中五日生化需氧量测定全程质量控制[J].环境科学与管理,2011,36(7):139-145.
[2] 黄道平,刘乙奇,李艳.软测量在污水处理过程中的研究与应用[J].化工学报,2011,62(1):1-9.
[3] Perera Yasith S,Ratnaweera D A A C,Dasanayaka Chamila H,et al.The role of artificial intelligence-driven soft sensors in advanced sustainable process industries:A critical review[J/OL].https://doi.org/10.1016/j.engappai.2023.105988,2023-03-21.
[4] Wang Gongming,Jia Qingshan,Zhou Mengchu,et al.Artificial neural networks for water quality soft-sensing in wastewater treatment: a review[J]. Artificial Intelligence Review,2021,55(1):565-587.
[5] Qiao Junfei,Hu Zhiqiang,Li Wenjing.Soft Measurement Modeling Based on Chaos Theory for Biochemical Oxygen Demand(BOD)[J].Water,2016,8(12):581-581.
[6] 丁海旭,李文静,叶旭东,等.基于自组织递归模糊神经网络的BOD软测量[J].计算机与应用化学,2019,36(4):331-336.
[7] 陈如清,于志恒.基于TentFWA-GD的RBF神经网络COD在线软测量方法[J].电子测量与仪器学报,2022,36(3):53-60.
[8] 谢俊标,江峰,杜军威,等.基于改进人工鱼群算法与RBF神经网络的股票价格预测[J].计算机工程与科学,2022,44(11):2080-2090.
[9] 吴学梅,牟莉.基于改进RBF-BP神经网络的预测方法研究[J].国外电子测量技术,2022,41(2):105-110.
[10] Kennedy J,Eberhart R.Particle Swarm Optimization[C].Proceedings of ICNN’95-International Conference on Neural Networks.IEEE,1995:1942-1948.
[11] 徐浩天,季伟东,孙小晴,等.基于正态分布衰减惯性权重的粒子群优化算法[J].深圳大学学报:理工版,2020,37(2):208-213.
[12] 王生亮,刘根友.一种非线性动态自适应惯性权重PSO算法[J].计算机仿真,2021,38(4):249-253.
[13] Zheng Kaitong,Yuan Xianfeng,Xu Qingyang,et al.Hybrid particle swarm optimizer with fitness-distance balance and individual self-exploitation strategies for numerical optimization problems[J].Information Sciences,2022,608:424-452.
[14] Zhao Shicun,Wang Da.Elite-ordinary synergistic particle swarm optimization[J].Information Sciences,2022,609:1567-1587.
[15] Yu Fei,Tong Lei,Xia Xuewen.Adjustable driving force based particle swarm optimization algorithm[J].Information Sciences,2022,609:60-78.
[16] Moody J,Darken C.Learning with localized receptive fields[C].Proceedings of the connectionist models summer school.Yale Univ,1988:133-143.
[17] SHI Y,EBERHART RC.Parameters selections in particle swarm optimization[C].Evolutionary Programming VII,1998:591-600.
[18] Yao Xin,Liu Yong,Lin Guangming. Evolutionary programming made faster.[J].IEEE Trans.Evolutionary Computation,1999,3(2):82-102.
[19] 陈博文,邹海.总结性自适应变异的粒子群算法[J].计算机工程与应用,2022,58(8):67-75.

备注/Memo

收稿日期:2023-05-25
基金项目:四川省科技计划资助项目(2021JDRC0046)
通信作者:李中志.E-mail:lizz@cuit.edu.cn

更新日期/Last Update: 2024-08-31