ZHANG Haodong,ZHOU Juan.Channel Estimation Method for OFDM System based on DFT-SWOMP[J].Journal of Chengdu University of Information Technology,2024,39(04):436-441.[doi:10.16836/j.cnki.jcuit.2024.04.007]
基于DFT-SWOMP的OFDM系统信道估计方法
- Title:
- Channel Estimation Method for OFDM System based on DFT-SWOMP
- 文章编号:
- 2096-1618(2024)04-0436-06
- 关键词:
- OFDM; 压缩感知; 信道估计; 离散傅里叶变换; 分段弱正交匹配追踪算法
- Keywords:
- OFDM; compressed sensing; channel estimation; discrete Fourier transform; segmented weak orthogonal matching pursuit algorithm
- 分类号:
- TP301
- 文献标志码:
- A
- 摘要:
- 基于压缩感知的OFDM信道估计方案中,分段弱正交匹配追踪(SWOMP)算法具有不需要预知信道稀疏度的优点,但其信道估计精度受输入的门限参数和迭代次数的影响较大。针对这一问题,提出一种基于DFT-LS算法的门限自适应的SWOMP算法改进方案。考虑到在OFDM系统中,保护间隔长度外的信道时域响应都可以视为噪声,因此该方案的核心思想是利用DFT-LS算法预估出噪声水平,并用此预估值来动态设置SWOMP算法的门限参数。同时,该方案还使用DFT-LS算法预估出的信道频域响应作为SWOMP算法的迭代停止条件。仿真结果表明,这种SWOMP算法的改进方案可以有效地估计出信道参数,并且相比SWOMP算法,其估计结果的MSE值在不同信噪比下都有不同程度的提升。
- Abstract:
- In the OFDM channel estimation scheme based on compressed sensing, the Segmented weakly orthogonal matching pursuit(SWOMP)algorithm has the advantage of not needing to predict the channel sparsity, but its channel estimation accuracy is greatly affected by the input threshold parameters and the number of iterations. Aiming at this problem, a threshold adaptive SWOMP algorithm improvement scheme based on DFT-LS algorithm is proposed. Considering that in the OFDM system, the time-domain response of the channel outside the guard interval length can be regarded as noise, so the core idea of the scheme is to use the DFT-LS algorithm to estimate the noise level, and use this estimated value to dynamically set the SWOMP The threshold parameter of the algorithm. At the same time, the scheme also uses the channel frequency domain response estimated by the DFT-LS algorithm as the iteration stop condition of the SWOMP algorithm.The simulation results show that this improved SWOMP algorithm can effectively estimate the channel parameters, and compared with the SWOMP algorithm, the MSE value of the estimated result has different degrees of improvement under different signal-to-noise ratios.
参考文献/References:
[1] Bhimsing D V,Bhagali A C.Performance of channel estimation and equalization in OFDM system[C].2017 IEEE International Conference on Power,Control,Signals and Instrumentation Engineering(ICPCSI).IEEE,2018:1003-1005.
[2] 胡奕旸,齐丽娜.基于自适应压缩感知的大规模MIMO-OFDM系统信道估计方法[J].物联网学报,2021,5(3):78-85.
[3] He X,Song R.Pilot pattern optimization for compressed sensing based sparse channel estimation in OFDM systems[C].International Conference on Wireless Communications & Signal Processing.IEEE,2010:1-5.
[4] Baraniuk R G.Compressive Sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[5] Barbotin Y,Hormati A,Rangan S,et al.Estimation of Sparse MIMO Channels with Common Support[J].IEEE Transactions on Communications,2012,60(12):3705-3716.
[6] Bajwa W U,Haupt J,Sayeed A M,et al.Compressed Channel Sensing:A New Approach to Estimating Sparse Multipath Channels[J].Proceedings of the IEEE,2010,98(6):1058-1076.
[7] Li C,Liu X,Yu K,et al.Debiasing of seismicreflectivity inversion using basis pursuit de-noising algorithm[J].Journal of Applied Geophysics,2020,177:104028.
[8] MallatS G,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
[9] Cai T T,Wang L.Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise[J].IEEE Transactions on Information Theory,2011,57(7):4680-4688.
[10] 陈秋芳,祖兴水,李宝清.一种自适应的弱选择压缩采样匹配追踪算法[J].电子设计工程,2016,24(11):150-153.
[11] Do T T,Lu G,Nguyen N,et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C].Signals,Systems and Computers.2008:581-587.
[12] Zhang Y,Sun G.Stagewise Arithmetic Orthogonal Matching Pursuit[J].International Journal of Wireless Information Networks,2018,25(2).221-228.
[13] 李珅,马彩文,李艳,等.压缩感知重构算法综述[J].红外与激光工程,2013,42(S1):225-232.
[14] 李姣军,蒋扬,邱天,等.基于压缩感知的MIMO-OFDM系统自适应信道估计[J].电讯技术,2021,61(10):1284-1290.
[15] Zhang Y,Liu K.A DFT-Based Channel Estimation Algorithm with Noise Elimination for Burst OFDM Systems[C].2019 6th International Conference on Information Science and Control Engineering(ICISCE).2019:28-31.
相似文献/References:
[1]喻伟闯,何培宇,徐自励,等.稀疏阵列方向不变恒定束宽波束形成优化方法[J].成都信息工程大学学报,2020,35(04):367.[doi:10.16836/j.cnki.jcuit.2020.04.001]
YU Weichuang,HE Peiyu,XU Zili,et al.Optimization Method of Sparse Array Steering-invariant Constant Beamwidth Beamforming[J].Journal of Chengdu University of Information Technology,2020,35(04):367.[doi:10.16836/j.cnki.jcuit.2020.04.001]
[2]夏朝禹,高瑜翔,谢建峰,等.基于约束条件的广义正交匹配追踪CS雷达成像算法[J].成都信息工程大学学报,2020,35(04):400.[doi:10.16836/j.cnki.jcuit.2020.04.006]
XIA Chaoyu,GAO Yuxiang,XIE Jianfeng,et al.Generalized Orthogonal Matching Pursuit CS Radar Imaging based on Constraints[J].Journal of Chengdu University of Information Technology,2020,35(04):400.[doi:10.16836/j.cnki.jcuit.2020.04.006]
[3]陈思琪,薛雅娟,杨清蜜,等.MCA框架下K-SVD构建字典对地震信号去噪与重建[J].成都信息工程大学学报,2021,36(01):7.[doi:10.16836/j.cnki.jcuit.2021.01.002]
CHEN Siqi,XUE Yajuan,YANG Qingmi,et al.Denoising and Reconstruction of Seismic Signals based on K-SVD under the MCA Framework[J].Journal of Chengdu University of Information Technology,2021,36(04):7.[doi:10.16836/j.cnki.jcuit.2021.01.002]
备注/Memo
收稿日期:2023-05-14
通信作者:周娟.E-mail:zhoujuan@cuit.edu.cn