PDF下载 分享
[1]黑亚芳,胡建成.常微分方程的数值求解与方法[J].成都信息工程大学学报,2024,39(04):499-511.[doi:10.16836/j.cnki.jcuit.2024.04.017]
 HEI Yafang,HU Jiancheng.Numerical Solutions and Methods for Ordinary Differential Equations[J].Journal of Chengdu University of Information Technology,2024,39(04):499-511.[doi:10.16836/j.cnki.jcuit.2024.04.017]
点击复制

常微分方程的数值求解与方法

参考文献/References:

[1] Ujjwal K,Deep,R,Tanmay S.Multilevel Monte Carlo Finite Difference Methods For Fractional Conservation Laws With Random Data[J].SIAM/ASA Journal on Uncertainty Quantification,2021,9(1):64-105.
[2] Lei L,Junqi Z,Chongmin S,et al.Automatic scaled boundary finite element method for three-dimensional elastoplastic analysis[J].International Journal of Mechanical Sciences,2020,171.
[3] Pankaj K.Solution of Fokker-Planck equation by finite element and finite difference methods for nonlinear systems[J].Sadhana-academy Proceedings in Engineering Sciences,2006,31(4):445-461.
[4] Chuanjun C,Xiaoyan Z,Guodong Z,et al.A Two-Grid Finite Element Method For Nonlinear Parabolic Integro-Differential Equations[J].International journal of computer mathematics,2019,96(10):2010-2023.
[5] Junjiang L,Fawang L,Vo V,et al.A Space-Time Finite Element Method For Solving Linear Riesz Space Fractional Partial Differential Equations[J].Numerical algorithms,2021,88(1):499-520.
[6] LeCun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521:436.
[7] Raissi M,Perdikaris P,Karniadakis G E.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707.
[8] Poggio T,Mhaskar H,Rosasco L,et al.Why and when can deep-but not shallow-networks avoid the curse of dimensionality:a review[J].International Journal of Automation and Computing,2017,14:503-519.
[9] Grohs P,Hornung F,Jentzen A,et al.A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of black-scholes partial differential equations[J].arXiv preprint arXiv:2018,1809:02362.
[10] Raissi M,Perdikaris P,Karniadakis G E.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].J.Comput.Phys.2019,378:686-707.
[11] George Cybenko.Approximation by superpositions of a sigmoidal function[C].In:Mathematics of control,signals and systems 2.4,1989:303-314.
[12] Hornik K,Stinchcombe M,White H.Multilayer feedforward networks are universal approximators[C].In:Neural Networks 2.5,1989:359-366.

相似文献/References:

[1]唐巧珍,冯玉姣,秦懂雷,等.箔条云高空爆炸成形特性数值计算及气象分析[J].成都信息工程大学学报,2018,(05):579.[doi:10.16836/j.cnki.jcuit.2018.05.016]
 TANG Qiao-zhen,FENG Yu-jiao,QIN Dong-lei,et al.Numerical Modeling of Chaff Cloud Explosive Trajectory in the Upper Air Condition and Weather Analysis[J].Journal of Chengdu University of Information Technology,2018,(04):579.[doi:10.16836/j.cnki.jcuit.2018.05.016]

备注/Memo

收稿日期:2023-02-09
基金项目:四川省科技计划重点研发资助项目(2019YFS0143)

更新日期/Last Update: 2024-08-31