PDF下载 分享
[1]李久玲,甘 刚.基于改进的MobileNetV2模型的安卓恶意家族分类方法研究[J].成都信息工程大学学报,2024,39(05):546-552.[doi:10.16836/j.cnki.jcuit.2024.05.005]
 LI Jiuling,GAN Gang.Research on Classification Method of Android Malware Family based on Improved MobileNetV2 Model[J].Journal of Chengdu University of Information Technology,2024,39(05):546-552.[doi:10.16836/j.cnki.jcuit.2024.05.005]
点击复制

基于改进的MobileNetV2模型的安卓恶意家族分类方法研究

参考文献/References:

[1] Bakour K,Ünver H M.VisDroid:Android malware classification based on local and global image features,bag of visual words and machine learning techniques[J].Neural Computing and Applications,2021,33:3133-3153.
[2] Rahali A,Lashkari A H,Kaur G,et al.DIDroid:Android malware classification and characterization using deep image learning[C].The 10th International Conference on Communication and Network Security.2020:70-82.
[3] Vasan D,Alazab M,Wassan S,et al. IMCFN:Image-based malware classification using fine-tuned convolutional neural network architecture[J].Computer Networks,2020,171:107138.
[4] Yuan B,Wang J,Liu D,et al.Byte-level malware classification based on markov images and deep learning[J].Computers & Security,2020,92:101740.
[5] Freitas S,Duggal R,Chau D H.MalNet:A large-scale image database of malicious software[J].arXiv preprint arXiv:2102.01072,2021.
[6] Allix K,Bissyandé T F,Klein J,et al.Androzoo:Collecting millions of android apps for the research community[C].Proceedings of the 13th International Conference on Mining Software Repositories.2016:468-471.
[7] Pan Y,Ge X,Fang C,et al.A systematic literature review of android malware detection using static analysis[J].IEEE Access,2020,8:116363-116379.
[8] Mat S R T,Ab Razak M F,Kahar M N M,et al.A Bayesian probability model for Android malware detection[J].ICT Express,2022,8(3):424-431.
[9] Raghav U,Martinez-Marroquin E,Ma W.Static analysis for Android malware detection with document vectors[C].2021 International Conference on Data Mining Workshops(ICDMW).IEEE,2021:805-812.
[10] Alzaylaee M K,Yerima S Y,Sezer S.DL-Droid: Deep learning based android malware detection using real devices[J].Computers & Security,2020,89:101663.
[11] Thangavelooa R,Jinga W W,Lenga C K,et al.Datdroid:Dynamic analysis technique in android malware detection[J].International Journal on Advanced Science,Engineering and Information Technology,2020,10(2):536-541.
[12] Sihag V,Vardhan M,Singh P,et al.De-LADY:Deep learning based Android malware detection using dynamic features[J].J. Internet Serv.Inf.Secur.,2021,11(2):34-45.
[13] YANG Jiyun,TANG Jiang,YAN Ran,et al.Android malware detection method based on permission complement and API calls[J].Chinese Journal of Electronics,2022,31(4):773-785.
[14] Cai H,Meng N,Ryder B,et al.Droidcat:Effective android malware detection and categorization via app-level profiling[J].IEEE Transactions on Information Forensics and Security,2018,14(6):1455-1470.
[15] Zhang Z,Qi P,Wang W.Dynamic malware analysis with feature engineering and feature learning[C].Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(1):1210-1217.
[16] Surendran R,Thomas T,Emmanuel S.A TAN based hybrid model for android malware detection[J].Journal of Information Security and Applications,2020,54:102483.
[17] Rong C,Gou G,Cui M,et al.TransNet:Unseen malware variants detection using deep transfer learning[C].International Conference on Security and Privacy in Communication Systems.Springer,Cham,2020:84-101.
[18] Nahmias D,Cohen A,Nissim N,et al.Deep feature transfer learning for trusted and automated malware signature generation in private cloud environments[J].Neural Networks,2020,124:243-257.
[19] Prima B,Bouhorma M.Using transfer learning for malware classification[J].The International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,44:343-349.
[20] Khetarpal A,Mallik A.Visual malware classification using transfer learning [C].2021 Fourth International Conference on Electrical,Computer and Communication Technologies(ICECCT).IEEE,2021:1-5.
[21] Jiang Y,Li R,Tang J,et al.AOMDroid:Detecting obfuscation variants of Android malware using transfer learning[C].International Conference on Security and Privacy in Communication Systems.Springer,Cham,2020:242-253.
[22] 陈小寒.基于深度学习的恶意软件可视化分类技术研究[D].长沙:湖南师范大学,2021.
[23] 于兴崭,芦天亮,杜彦辉,等.基于合成图像和Xception改进模型的安卓恶意家族分类方法[J].计算机科学,2023,50(4):351-358.
[24] Sandler M,Howard A,Zhu M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[25] Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[26] Woo S,Park J,Lee J Y,et al.Cbam:Convolutional block attention module[C].Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.

备注/Memo

收稿日期:2023-05-29
基金项目:四川省科技计划资助项目(2023YFG0292,2021ZDY0011); 四川省社科基金资助项目(SC21B034)

更新日期/Last Update: 2024-10-31