ZHOU Yu,LI Guoping.Diagnostic Study of a Squall Line and MCS Interaction on the Northwest Side of Sichuan Basin[J].Journal of Chengdu University of Information Technology,2024,39(05):571-580.[doi:10.16836/j.cnki.jcuit.2024.05.009]
四川盆地西北侧一次飑线与MCS相互作用的诊断分析
- Title:
- Diagnostic Study of a Squall Line and MCS Interaction on the Northwest Side of Sichuan Basin
- 文章编号:
- 2096-1618(2024)05-0571-10
- Keywords:
- squall line; MCS; Sichuan Basin; interaction; diagnostic analysis
- 分类号:
- P434+.5
- 文献标志码:
- A
- 摘要:
- 为更好理解飑线与MCS这两种典型中尺度系统相互作用过程中热力、动力、水汽与微物理的基本特征及其演变规律,利用ERA5再分析资料、GPM及FY-4A卫星资料,对2018年7月1-2日发生于四川盆地西北侧一次飑线与MCS相互作用过程进行诊断分析。得出的主要结果有:(1)受高原槽、低层切变线及复杂地形的共同作用,飑线东南移动过程中,先爬坡加强,后下坡减弱,与原地少动的中尺度对流系统(mesoscale convective system,MCS)合并后,二者有明显的热力、动力、水汽等物理量交换,飑线减弱而MCS加强。(2)在两种中尺度天气系统发生相互作用前,对流有效位能大值区由“零散点状分布”转变为“集中式大范围分布”。(3)“上正下负”的位涡垂直配置与中层较小的正热力螺旋度均能较好指示系统的加强,中低层水汽通量辐合与中层较小的正水汽螺旋度相呼应。(4)飑线与MCS合并前,飑线以冷云降水过程为主,MCS则以暖云降水过程为主; 二者开始合并至合并完成后,受飑线的影响,MCS的0 ℃层以上雪水与冰水含量有明显提升,MCS降水转为暖云与冷云降水共同作用。该研究可为加深认识两类中尺度系统相互作用过程提供理论参考,对其预警预报也有一定指导意义。
- Abstract:
- To better understand the basic characteristics and evolution patterns of thermodynamics,dynamics,water vapor,and microphysics in the interaction process between the two typical mesoscale synoptic systems,this article used ERA5(the fifth generation hourly reanalysis data from the European Centre for Medium-Range Weather Forecasts)reanalysis data,GPM(Global Precipitation Measurement)and Chinese FY-4A satellite data to diagnose and analyze the interaction process between the squall line and MCS(MesoscaleConvective System)that occurred from July 1 to 2,2018 on the northwest side of the Sichuan Basin. The main results obtained wereas follows:(1)Under the joint influence of the plateau trough,low-level shear line,and complex terrain,the squall line moved southeast,strengthening first when climbing,and then weakening when descending. After merging with the MCS with minimal movement in place,there was a significant exchange of matter and energy between the two,and the squall line weakened and MCS strengthened.(2)Before the interaction between the two mesoscale synoptic systems,the high-value area of convective available potential energy(CAPE)changed from a “scattered spot distribution” to a “concentrated large area distribution”.(3)The configuration of the “upper positive and lower negative” potential vorticity,as well as the smaller positive thermal helicity in the middle layer,could effectively indicate the strengthening of the system. The convergence of the water vapor flux in the middle and lower layers corresponded to the smaller positive water vapor helicity in the middle layer.(4)Before the merger of the squall line and MCS,the squall line were dominated by the cold cloud precipitation process,while the MCS was dominated by the warm cloud precipitation process; During the period from the beginning of the merger to the completion of the merger,due to the influence of the squall line,the specific snow water content and specific cloud ice water content above 0 ℃ of the MCS significantly increased,and the precipitation of the MCS turned into a combination of the warm and cold cloud precipitation. This study could provide the theoretical reference for deepening the understanding of the interaction process between the two types of mesoscale systems and also had certain guiding significance for their early warning and forecast.
参考文献/References:
[1] Dong Y,Li G,Xie X,et al.Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau[J].Adv.Atmos.Sci,2023.
[2] Wu A,Li G.Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin[J].Atmosphere,2022,14(1):84.
[3] Shen C,Li G,Dong Y.Vertical structures associated with orographic precipitation during warm season in the Sichuan Basin and its surrounding areas at different altitudes from 8-year GPM DPR observations[J].Remote Sensing,2022,14(17):4222.
[4] 付智龙,李国平,姜凤友,等.四川盆地西部一次暖区山地暴雨事件的动力过程分析与局地环流数值模拟[J].大气科学,2022,46(6):1366-1380.
[5] 陈炯,郑永光,张小玲,等.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J].气象学报,2013,71(3):367-382.
[6] 龙柯吉,康岚,罗辉,等.四川盆地雷暴大风雷达回波特征统计分析[J].气象,2020,46(2):212-222.
[7] 康岚,朱克云,张杰,等.引发四川盆地区域性暴雨的高原MCS特征分析[J].成都信息工程大学学报,2017,32(4):402-408.
[8] 竹利,陈朝平,陈茂强,等.川北飑线成熟阶段灾害性大风成因个例分析[J].暴雨灾害,2018,37(2):164-173.
[9] 李永军,陈科艺.一次攀西地区飑线天气过程形成机制分析[J].气象科技,2019,47(6):997-1005.
[10] 陈永仁,李跃清.“12.7.22”四川暴雨的MCS特征及对短时强降雨的影响[J].气象,2013,39(7):848-860.
[11] 张武龙,青泉,杨景朝,等.触发四川盆地极端短时强降水的中尺度对流系统环境条件[J].成都信息工程大学学报,2023,38(3):349-357.
[12] 青泉,赵静,叶儒辉.夏季四川盆地强降水列车效应特征[J].气象科技,2015,43(2):250-260.
[13] 李曦,黄敬淋,王智楷.2019年4月9日四川东北部一次飑线大风的成因分析[J].沙漠与绿洲气象,2020,14(4):52-60.
[14] Wu F,Lombardo K. The impact of offshore-propagating squall lines on coastal-mountain flows[J].Geophysical Research Letters,2023,50(6):e2023GL102825.
[15] Li S,Li G,Wang X,et al. Precipitation characteristics of an abrupt heavy rainfall event over the complex terrain of southwest China observed by the FY-4A satellite and doppler weather radar[J].Water,2020,12(9):2502.
[16] Schumacher R S,Rasmussen K L.The formation,character and changing nature of mesoscale convective systems[J].Nature Reviews Earth & Environment,2020,1(6):300-314.
相似文献/References:
[1]康 岚,朱克云,张 杰,等.引发四川盆地区域性暴雨的高原MCS特征分析[J].成都信息工程大学学报,2017,(04):402.[doi:10.16836/j.cnki.jcuit.2017.04.010]
KANG Lan,ZHU Ke-yun,ZHANG Jie,et al.The Featuer Analsis on Tibetan Plateau MCS Which Brings
Heavy Regional Precipitation over Sichuan Basin[J].Journal of Chengdu University of Information Technology,2017,(05):402.[doi:10.16836/j.cnki.jcuit.2017.04.010]
[2]龙天强,俞小鼎,凌 燕,等.基于区域站雷达观测的黔东南“7.20”极端降水成因分析[J].成都信息工程大学学报,2021,36(02):214.[doi:10.16836/j.cnki.jcuit.2021.02.014]
LONG Tianqiang,YU Xiaoding,LING Yan,et al.Analysis on the Causes of the Extreme Precipitation in the Southeast of Guizhou on June 20 based on Radar Observation by Regional Station[J].Journal of Chengdu University of Information Technology,2021,36(05):214.[doi:10.16836/j.cnki.jcuit.2021.02.014]
[3]李 吉,谌 芸,肖天贵,等.东北地区冷涡背景下飑线的统计特征[J].成都信息工程大学学报,2022,37(01):72.[doi:10.16836/j.cnki.jcuit.2022.01.013]
Li Ji,CHEN Yun,XIAO Tiangui,et al.Statistical Characteristics of Squall Line Under Cold Vortex Background in Northeast China[J].Journal of Chengdu University of Information Technology,2022,37(05):72.[doi:10.16836/j.cnki.jcuit.2022.01.013]
[4]张武龙,青 泉,杨景朝,等.触发四川盆地极端短时强降水的中尺度对流系统环境条件[J].成都信息工程大学学报,2023,38(03):349.[doi:10.16836/j.cnki.jcuit.2023.03.015]
ZHANG Wulong,QING Quan,YANG Jingchao,et al.Environmental Conditions of Mesoscale Convective Systems Triggering Extreme Flash-Rain in Sichuan Basin[J].Journal of Chengdu University of Information Technology,2023,38(05):349.[doi:10.16836/j.cnki.jcuit.2023.03.015]
备注/Memo
收稿日期:2023-09-03
基金项目:国家自然科学基金资助项目(42175002、42075013); 四川省自然科学基金资助项目(2023NSFSC0242)
通信作者:李国平.E-mail:liguoping@cuit.edu.cn