CHEN Xuxing.A Real-Time Localization Method for Leakage Points of Large-Span Subsea Oil and Gas Pipelines[J].Journal of Chengdu University of Information Technology,2024,39(06):712-717.[doi:10.16836/j.cnki.jcuit.2024.06.010]
一种大跨度海底油气管道泄漏点实时定位方法
- Title:
- A Real-Time Localization Method for Leakage Points of Large-Span Subsea Oil and Gas Pipelines
- 文章编号:
- 2096-1618(2024)06-0712-06
- Keywords:
- fiber-optic sensing; subsea oil and gas pipeline leakage; large-span; real-time localization
- 分类号:
- TP212.14
- 文献标志码:
- A
- 摘要:
- 为解决海底大跨度油气管道的健康实时监测和泄漏定位问题,提出一种利用光纤水听器阵列进行海底管道泄漏实时被动声定位的方法。该方法根据管道长度的不同,设计了两种适用于中短距离(250 km以内)和长距离(250 km以上)的海底管道健康监测方案。分析了光纤水听器阵列技术的定位原理和误差来源,理论定位精度可达9.3 mm。开展了管道泄漏声压级监测的湖上实验,验证了光纤水听器阵列能够有效地检测和定位管道泄漏事件,优化了传感器组的间隔为1 km。该方法具有实时、多点、大跨度、高精度、不依赖泄漏物质成分、不影响管线结构等优点,为海底大跨度油气管道的安全运行提供了一种新的技术手段。
- Abstract:
- To solve the problem of real-time health monitoring and leakage localization of large-span subsea oil and gas pipelines, a method of using a fiber-optic hydrophone array for real-time passive acoustic localization of subsea pipeline leakage is proposed. According to the different pipeline lengths, two health monitoring schemes suitable for medium-short distance(within 250 km)and long-distance(above 250 km)subsea pipelines are designed. The localization principle and error sources of fiber-optic hydrophone array technology are analyzed, and the theoretical localization accuracy can reach 9.3 mm. A lake test of pipeline leakage sound pressure level monitoring was carried out, which verified that the fiber-optic hydrophone array could effectively detect and locate pipeline leakage events, and optimized the sensor unit interval to 1 km.This method has the advantages of real-time, multi-point, large-span, high-precision, independent of leakage material composition, and no impact on pipeline structure, etc., providing a new technical means for the safe operation of large-span subsea oil and gas pipelines.
参考文献/References:
[1] 熊毅,高萍,奉虎,等.用于管道变形检测的新型泡沫智能清管器设计与试验验证[J].机械工程学报,2019,55(18):22-27.
[2] 胡楚迪.智能清管器在油气储运方面的应用[J].化工管理,2015(25):16.
[3] 王昌波,金梅,白任彦.智能清管器在管道上的应用[J].科技创新导报,2013(2):136.
[4] 李广之,李双林,杨卫东,等.井中油气地球化学探测技术及其应用[J].海洋地质动态,2009,25(12):27-35.
[5] 王晓红,王毅民,张学华.中国海洋地球化学探测技术的现状与发展[J].地球学报,2002(1):7-10.
[6] 郭金家,张锋,刘春昊,等.拉曼-荧光联合光谱水下原位探测技术研究[J].光谱学与光谱分析,2017,37(10):3099-3102.
[7] 亓夫军,魏旭可,郭金家.水下荧光光谱探测装置控制系统的设计与实现[J].中国海洋大学学报(自然科学版),2014,44(6):109-113.
[8] 马琦琦,冯忠耀,王若晖,等.面向管线监测的分布式光纤传感土壤传热研究[J].光子学报,2023,52(6):157-167.
[9] 李晓蓉,刘旭丰,张毅,等.基于分布式光纤声传感的油气井工程监测技术应用与进展[J].石油钻采工艺,2022,44(3):309-320.
[10] 纪然然,宛立君,吴梦实.分布式光纤声波传感技术在PCCP管道监测中的应用[J].声学与电子工程,2021(2):15-17.
[11] 王辰,刘庆文,陈典,等.基于分布式光纤声波传感的管道泄漏监测[J].光学学报,2019,39(10):119-125.
[12] 曹春燕,胡宁涛,熊水东,等.光纤水听器远程全光放大系统相位噪声研究[J].光学学报.2023,43(11):17-24.
[13] 胡晓阳,陈伟,孟洲,等.远程光纤水听器系统中光学非线性效应研究进展[J].半导体光电,2022,43(4):738-743.
[14] 孟洲,陈伟,王建飞,等.光纤水听器技术的研究进展[J].激光与光电子学进展.2021,58(13):123-143.
[15] 张清华.海水声速对多波束测深的影响[J].中国水运.2011,11(2):90-91.
[16] Alexandra Techet.Introduction To Ocean ScienceAnd Engineering[EB/OL]. https://ocw.mit.edu/courses/2-011-introduction-to-ocean-science-and-engineering-spring-2006/073d1246f6aac010 2c6b29e0bfdfa5bc_hw5_sonar_leonar.pdf,2006.
[17] Huang ShihChu,Lin WuuWen,Tsai MengTsan,et al.Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J].Sensors and Actuators A,2007,135:570-579.
[18] Cameron Black.Ambient Noise.The background noise of the sea[EB/OL]. https://silo.tips/download/ambient-noise-the-background-noise-of-the-sea#modals,2017.
[19] John Robert Potter,Lim Tze Wei M,Ar Chitre.Acoustic Imaging The Natural Soundscape In Singapore Waters[J].Singapore Waters,1997.
[20] Z Meng,W Chen,J Wang,et al.Recent progress in Fiber-Optic hydrophone[J].Photonic Sensors,2021,11(1):109-122.
备注/Memo
收稿日期:2023-07-27
通信作者:陈绪兴.E-mail:13917492084@163.com