PDF下载 分享
[1]唐明婕,甘 刚.基于改进的图注意机制模型的安卓恶意软件检测方法研究[J].成都信息工程大学学报,2025,40(01):21-28.[doi:10.16836/j.cnki.jcuit.2025.01.004]
 TANG Mingjie,GAN Gang.Research on Android Malware Detection Method based on the Improved Graph Attention Mechanism Model[J].Journal of Chengdu University of Information Technology,2025,40(01):21-28.[doi:10.16836/j.cnki.jcuit.2025.01.004]
点击复制

基于改进的图注意机制模型的安卓恶意软件检测方法研究

参考文献/References:

[1] Chen H M,JiangCun H U.Static Detection Method of Android Malware[C].Computer Systems & Applications,2018.
[2] 秦中元,徐毓青,梁彪,等.一种Android平台恶意软件静态检测方法[J].东南大学学报(自然科学版),2013,43(6):1162-1167.
[3] 张锐.Android环境下恶意软件静态检测方法研究[D].重庆:重庆大学,2014.
[4] 王站.Android平台恶意代码静态检测技术的研究与实现[D].成都:电子科技大学,2014.
[5] 王军,庄毅,潘家晔.一种Android恶意软件多标签检测方法[J].小型微型计算机系统,2017,38(10):2307-2311.
[6] Tian K,Yao D,Ryder B G,et al.Detection of Repackaged Android Malware with Code-Heterogeneity Features[J].IEEE Transactions on Dependable and Secure Computing,2020,17(1):64-77.
[7] Fan M,Liu J,Wang W,et al.DAPASA: Detecting Android Piggybacked Apps Through Sensitive Subgraph Analysis[J].IEEE Transactions on Information Forensics and Security,2017,12(8):1772-1785.
[8] Jamalpur S,Navya Y S,Raja P,et al.Dynamic Malware Analysis Using Cuckoo Sandbox[C].Second International Conference on Inventive Communication & Computational Technologies,2018:1056-1060.
[9] Gianazza A,Maggi F,Fattori A,et al.PuppetDroid: A User-Centric UI Exerciser for Automatic Dynamic Analysis of Similar Android Applications[EB/OL].Https://arxiv.org/abs/1402.4826,2014.
[10] Shabtai A,Kanonov U,Elovici Y,et al."Andromaly": a behavioral malware detection framework for android devices[J].Journal of Intelligent Information Systems,2012,38(1):161-190.
[11] Saracino A,Scandurra D,Dini G,et al.MADAM: Effec-tive and efficient behavior-based Android malware detectionand prevention[J].IEEE Transactions on Dependable andSecure Computing,2018,15(1):83-97.
[12] 彭守镇.基于模糊神经网络的恶意APP软件动态检测技术研究[J].现代电子技术,2020,43(2):49-52.
[13] Enck W,Gilbert P,Cox L P,et al.TaintDroid: An Information Flow Tracking System for Real-Time Privacy Monitoring on Smartphones[J].Communications of the ACM,2014,57(3):99-106.
[14] Zhang Y,Yang M,Xu B,et al.Vetting undesirable behaviors in android apps with permission use analysis[C].Computer and Communications Security.ACM,2013.
[15] Platzer C,Lindorfer M,Neugschwandtner M,et al.ANDRUBIS-1,000,000 Apps Later: A View on Current Android Malware Behaviors[C].Third International Workshop on Building Analysis Datasets & Gathering Experience Returns for Security,IEEE,2016.
[16] F Scarselli,M Gori,A C Tsoi,et al.The Graph Neural Network Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80.
[17] Kipf T N,Welling M.Semi-Supervised Classification with Graph Convolutional Networks[EB/OL].Https://arxiv.org/abs/1609.02907,2016.
[18] Petar Veli kovi,Guillem Cucurull,Arantxa Casanova,et al.Graph Attention Networks[EB/OL].Https://arxiv.org/abs/1710.10903,2017.
[19] Busch J,Kocheturov A,Tresp V,et al.NF-GNN: Network Flow Graph Neural Networks for Malware Detectionand Classification[EB/OL].Https://arxiv.org/abs/2103.03939,2021.
[20] Feng P,Ma J,Li T,et al.Android Malware Detection via Graph Representation Learning[J].Mobile Information Systems.2021; 2021(6):1-14.
[21] Li S,Zhou Q,Zhou R,et al.Intelligent malware detection based on graph convolutional network[J].The Journal of Supercomputing,2021; 78(4): 4182-4198.
[22] Wu Q,Zhang H,Gao X,et al.Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems[EB/OL].Https://arxiv.org/abs/1903.10433,2019.
[23] Wang H,Zhao W,Li Z,et al.A Weighted Graph Attention Network Based Method for Multi-label Classification of Electrocardiogram Abnormalities[C].2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC)in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society.IEEE,2020.
[24] Qiu L,Li H,Wang M,et al.Gated Graph Attention Network for Cancer Prediction[J].Sensors,2021,21(6): 1938.
[25] Perozzi B,AlFRfou R,Skiena S.Deepwalk: online learning of social representations[C].Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.New York: ACM,2014.
[26] Grover A,Leskovec J.Node2vec: scalable feature learning for networks[C].Proceedings of the 22nd ACM SIGKDD International conference on Knowledge discovery and data mining.San Francisco: ACM,2016.
[27] Wang D,Peng C,Zhu W.Structural deep network embedding[C].Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.San Francisco: ACM,2016.
[28] Garcia J,Sillero A,Montes M,et al.CICMALDROID2020:a benchmark dataset for Android malware detection based on mimicry and evasion techniques[J].Future Generation Computer Systems,2020,109:420-435.
[29] Xiao X,Zhang S,Mercaldo F,etal.Android malware detection based on system call sequences and LSTM[J].Multimed Tools Appl,2019,78:3979.
[30] Catal C,Gunduz H,Ozcan A.Malware detection based on graph attention networks for intelligent transportation systems[J].Electronics,2021,10(20): 2534.
[31] Yue Z W,Fang Y,Zhang.Android malware detection based on graph attention networks[J].J Sichuan Univ:Nat Sci Ed,2022,59:053002.

备注/Memo

收稿日期:2023-09-13
基金项目:四川省科技计划资助项目(23ZDYF0380、2021ZYD0011)
通信作者:甘刚.Email:test_me@cuit.edu.cn

更新日期/Last Update: 2025-02-28