FAN Runwu,GUO Bengqing.A Broadband Active-Feedforward Noise-Cancelling Low-Noise Amplifier[J].Journal of Chengdu University of Information Technology,2025,40(02):132-136.[doi:10.16836/j.cnki.jcuit.2025.02.002]
一种宽带有源前馈噪声消除CMOS低噪声放大器
- Title:
- A Broadband Active-Feedforward Noise-Cancelling Low-Noise Amplifier
- 文章编号:
- 2096-1618(2025)02-0132-05
- 分类号:
- TN722.3
- 文献标志码:
- A
- 摘要:
- 提出一种单端结构的宽带低噪声放大器。基于传统的共栅和共源噪声消除结构,引入有源前馈电路提升共栅级输入跨导,并降低直流电流,从而负载电阻可以适当增加以降低其噪声输出,保证电路整体更低的噪声指数; 同时,提出改进的n/pMOS互补结构方案,有效提高线性度并降低了功耗。为把电路设计成宽带,在输入级和输出级均采用π型匹配网络。使用Cadence Spectre-RF基于TSMC 65 nm CMOS工艺进行仿真。结果显示:在1~12 GHz带宽内,增益为14~17 dB,噪声系数为2.45~3.45 dB; 在5 GHz时,IIP3和IIP2的线性度分别为-2.4 dBm和23 dBm; 电路仅消耗7.8 mW,芯片面积0.21 mm2。
- Abstract:
- A single-ended broadband low-noise amplifier is proposed. Based on a traditional common-gate and common-source noise cancellation structure, an active feed-forward stage is used to reduce the DC of the common-gate branch and boost input transconductance. Accordingly, a larger resistive load is allowed to inhibit its noise output and maintain the overall low NF of LNA. Meanwhile, an improved complementary n/pMOS structure is applied to enhance linearity and halve power consumption. For broadband design targets,π-type matching networks are used in both the input stage and the output stage. Cadence Specter-RF is used for simulation based on the TSMC 65 nm CMOS process. The results show a gain of 14-17 dB and a noise figure of 2.45-3.45 dB within a bandwidth of 1-12 GHz. The linearity of IIP3 and IIP2 are -2.4 and 23 dBm at 5 GHz. The circuit consumes only 7.8 mW,the chip area is 0.21 mm2.
参考文献/References:
[1] Hampel S K,Schmitz O,Tiebout M,et al.9-GHz wideband CMOS RX and TX front-ends for universal radio applications[J].IEEE Trans.Microw.Theory Techn,2012,60(4):1105-1116.
[2] Guo B,Wang H,Wang Y,et al.A Mixer-First Receiver Frontend with Resistive-Feedback Baseband Achieving 200 MHz IF Bandwidth in 65 nm CMOS[C]//2022 IEEE Radio Frequency Integrated Circuits Symposium(RFIC),2022:31-34.
[3] Zhang H,Sánchez-Sinencio E.Linearization Techniques for CMOS Low Noise Amplifiers:A Tutorial[J].in IEEE IEEE Trans.Circuits Syst.I:Reg,2011,58(1):22-36.
[4] Liu Z,Boon C C,Yu X,et al.A 0.061-mm2 1-11-GHz Noise-Canceling Low-Noise Amplifier Employing Active Feedforward With Simultaneous Current and Noise Reduction[J].IEEE Transactions on Microwave Theory and Techniques,2021,69(6):3093-3106.
[5] Bevilacqua A,Niknejad A M.An ultrawideband CMOS low-noise amplifier for 3.1-10.6 GHz wireless receivers[J].in IEEE Journal of Solid-State Circuits,2004,39(12):2259-2268.
[6] Behzad Razavi.RF microelectronics[M].2nd edition.New York:Hamilton Printing Company,2012.
[7] Zhuo W,Li X,Shekhar S,et al.A capacitor cross-coupled common-gate low-noise amplifier[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2005,52(12):875-879.
[8] Blaakmeer S C,Klumperink E A M,Leenaerts D M W,et al.Wideband balun-LNA with simultaneous output balancing,noise-canceling,and distortion-canceling[J].IEEE J.Solid-State Circuits,2008,43(6):1341-1350.
[9] Yu H,Chen Y,Boon C C,et al.A 0.096 mm2 1-20-GHz Triple-Path Noise-Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS-nMOS Configuration[J].in IEEE Trans.Microw.Theory and Techn.,2020,68(1):144-159.
[10] Bozorg A,Staszewski R B.A 20 MHz-2 GHz Inductorless Two-Fold Noise-Canceling Low-Noise Amplifier in 28-nm CMOS[J].in IEEE Trans.Circuits Syst.I:Reg.Papers,2022,69(1):42-50.
[11] Guo B,Chen J,Li L,et al.A Wideband Noise-Canceling CMOS LNA With Enhanced Linearity by Using Complementary nMOS and pMOS Configurations[J].in IEEE Journal of Solid-State Circuits,2017,52(5):1331-1344.
[12] Guo B,Gong J,Wang Y.A Wideband Differential Linear Low-Noise Transconductance Amplifier With Active-Combiner Feedback in Complementary MGTR Configurations[J].in IEEE Trans.Circuits Syst.I:Reg.Papers,2021,68(1):224-237.
[13] Guo B,Chen J,Chen H,et al.A 0.1-1.4 GHz inductorless low-noise amplifier with 13 dBm IIP3 and 24 dBm IIP2 in 180 nm CMOS[J].Modern Physics Letters B,2018,32:1850009.
[14] Kim T W.A Common-Gate Amplifier With Transconductance Nonlinearity Cancellation and Its High-Frequency Analysis Using the Volterra Series[J].in IEEE Trans.Microw.Theory and Techn.,2009,57(6):1461-1469.
[15] Wu J,Guo B,Wang H,et al.A 2.4 GHz 87 μW low-noise amplifier in 65 nm CMOS for IoT applications[J].Mod.Phys.Lett.B,2021,35(32):2150485.
备注/Memo
收稿日期:2023-10-19
基金项目:国家自然科学基金资助项目(61871073)
通信作者:郭本青.E-mail:rficgbq@gmail.com