LI Shiqian,TANG Shunxian,LI Rui,et al.Quality Assessment of Hourly Wind Field Data from Wind Profiling Radar in Chengdu Area based on ERA5 Reanalysis Data[J].Journal of Chengdu University of Information Technology,2025,40(03):368-375.[doi:10.16836/j.cnki.jcuit.2025.03.018]
基于ERA5再分析资料的成都地区风廓线雷达小时风场数据质量评估
- Title:
- Quality Assessment of Hourly Wind Field Data from Wind Profiling Radar in Chengdu Area based on ERA5 Reanalysis Data
- 文章编号:
- 2096-1618(2025)03-0368-08
- Keywords:
- wind profiling radar; ERA5; quality evaluation
- 分类号:
- P412
- 文献标志码:
- A
- 摘要:
- 基于ERA5再分析资料对成都市2种型号的6部风廓线雷达在2022年和2023年夏季的数据质量进行分析与评估。结果表明,成都地区风廓线雷达在准确测量风速度方面的能力超过了风向,风廓线雷达测量的风速数据整体上偏大于ERA5数据,而风向数据则偏小。其次,无论是风速还是风向,其在中层海拔探测数据的精确度较高,误差较小。然而,对于高层海拔和近地面的测量,其性能稍有不足。此外,风廓线雷达在5~10 m/s风速区间和180°~225°风向区间的探测性能较好。进一步分析发现,风速主要受U分量风速的影响,误差也主要由此引起。分析有利于正确评估风廓线雷达数据质量,深入追溯其在风速和风向测量的误差源和进一步拓展风廓线雷达数据在科学研究领域的应用,均具有重要的意义。
- Abstract:
- This study conducted an analysis and evaluation of the data quality of six wind profile radars of two types in Chengdu city in the summers of 2022 and 2023, based on the ERA5 reanalysis data. The results show that the ability of wind profiling radar in the Chengdu area to accurately measure wind speed exceeds that of wind direction, with the wind speed data measured by wind profiling radar generally larger than the ERA5 data, and the wind direction data smaller. Secondly, whether it is wind speed or wind direction, the accuracy of the data detected at mid-altitude is higher with less error. However, the performance is slightly inadequate for measurements at high altitudes and near the ground. In addition, wind profiling radar performs well in detecting wind speed in the 5-10 m/s range and wind direction in the 180°-225° range. Further analysis found that wind speeds are mainly affected by the U-component wind speed, and errors are mainly caused by this. The conclusions of this paper are beneficial for correctly assessing the quality of wind profiling radar data, deeply tracing the sources of errors in wind speed and direction measurements, and further expanding the application of wind profiling radar data in the field of scientific research, all of which are of great significance.
参考文献/References:
[1] Millstein D,Bolinger M,Wiser R.What can surface wind observations tell us about interannual variation in wind energy output?[J].Wind Energy,2022,25:1142-1150.
[2] 曹可劲,崔国恒,朱银兵.超声波风速仪理论建模与分析[J].声学与电子工程,2010(1):4.
[3] 唐盘良.超声风速风向仪设计[D].成都:电子科技大学,2016.
[4] 胡明宝, 李妙英. 风廓线雷达的发展与现状[J]. 气象科学, 2010,30(5):724-729.
[5] 董丽萍,吴蕾,王令.风廓线雷达组网资料初步对比分析[C].中国气象学会年会,2014.
[6] 周旭辉.风廓线雷达功率谱密度数据处理算法研究[D].南京:南京信息工程大学,2011.
[7] 刘思佳, 卢萍, 刘金卿, 等. 名山站探空资料与风廓线雷达资料的对比分析[J]. 高原山地气象研究, 2021,41(3):127-135.
[8] 裴丽丝,邱崇践.多普勒雷达VAD风廓线资料的质量评估[J].热带气象学报,2013,29(4):597-606.
[9] B J O A.ERA5:The new champion of wind power modelling?[J].Renewable Energy,2018,126:322-331.
[10] Brune S,Keller J,Wahl S.Evaluation of wind speed estimates in reanalyses for wind energy applications[J].Copernicus GmbH,2021,18:115-126.
[11] Fan W, Liu Y, Chappell A, et al. Evaluation of Global Reanalysis Land Surface Wind Speed Trends to Support Wind Energy Development Using In Situ Observations[J]. Journal of Applied Meteorology and Climatology, 2020, 60(1):33-50.
[12] 黄晴,梁维亮,黄荣.风廓线雷达产品与ERA5再分析资料的对比分析[J].气象研究与应用,2021,42(4):6.
[13] Deng X,He D,Zhang G,et al.Comparison of horizontal wind observed by wind profiler radars with ERA5 reanalysis data in Anhui,China[J].Theoretical and Applied Climatology,2022,150(3):1745-1760.
相似文献/References:
[1]王一文,朱克云,张 杰,等.边界层风廓线雷达在短时大风过程中的特征分析[J].成都信息工程大学学报,2016,(增刊1):64.
[2]康 雪,许 晨,李 愉.用L波段探空测风雷达评估风廓线雷达测风准确性[J].成都信息工程大学学报,2021,36(03):293.[doi:10.16836/j.cnki.jcuit.2021.03.009]
KANG Xue,XU Chen,LI Yu.Accuracy Estimation of Wind Profile Radar by L-band Radar[J].Journal of Chengdu University of Information Technology,2021,36(03):293.[doi:10.16836/j.cnki.jcuit.2021.03.009]
[3]陈 夏,王海江,吴 蕾,等.一种综合的风廓线雷达数据质量控制方法[J].成都信息工程大学学报,2021,36(05):485.[doi:10.16836/j.cnki.jcuit.2021.05.002]
CHEN Xia,WANG Haijiang,WU Lei,et al.A Synthetic Quality Control Method of Wind Profile Radar Data[J].Journal of Chengdu University of Information Technology,2021,36(03):485.[doi:10.16836/j.cnki.jcuit.2021.05.002]
[4]顾桃峰,岳海燕,贾宁远,等.基于高斯拟合的复杂环境地杂波自适应抑制方法[J].成都信息工程大学学报,2024,39(02):148.[doi:10.16836/j.cnki.jcuit.2024.02.004]
GU Taofeng,YUE Haiyan,JIA Ningyuan,et al.An Adaptive Clutter Suppression Method based on Gaussian Fitting in Complex Environment[J].Journal of Chengdu University of Information Technology,2024,39(03):148.[doi:10.16836/j.cnki.jcuit.2024.02.004]
备注/Memo
收稿日期:2023-10-31
基金项目:四川省自然科学基金资助项目(2024NSFSC0769; 2022NSFSC0209); 高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金资助项目(SZKT202208); 中国气象局大气探测重点开放实验室开放课题资助项目(2022KLAS02M,2022KLAS04M)
通信作者:唐顺仙.E-mail:tsx@cuit.edu.cn