PDF下载 分享
[1]高宇晨,张新有,冯 力.基于CNN-BiLSTM-SA的DDoS攻击检测方案[J].成都信息工程大学学报,2025,40(04):415-421.[doi:10.16836/j.cnki.jcuit.2025.04.001]
 GAO Yuchen,ZHANG Xinyou,FENG Li.A DDoS Attack Detection Method based on CNN-BiLSTM-SA[J].Journal of Chengdu University of Information Technology,2025,40(04):415-421.[doi:10.16836/j.cnki.jcuit.2025.04.001]
点击复制

基于CNN-BiLSTM-SA的DDoS攻击检测方案

参考文献/References:

[1] Gulihar P,Gupta B.Cooperative mechanisms for defending distributed denial of service(DDoS)attacks[J]. Handbook of Computer Networks and Cyber Security:Principles and Paradigms,2020:421-443.
[2] Prasad K,Rama A,Venugopal K.Ensemble classifiers with drift detection(ECDD)in traffic flow streams to detect DDOS attacks[J]. Wireless Personal Communications,2018,99:1639-1659.
[3] Villa-Pérez M,Alvarez-Carmona M,Loyola-González O,et al.Semi-supervised anomaly detection algorithms:A comparative summary and future research directions[J]. Knowledge-Based Systems,2021,218:106878.
[4] 贾婧,王庆生,陈永乐,等.基于注意力机制的DDoS攻击检测方法[J]. 计算机工程与设计,2021,42(9):2439-2445.
[5] Vinayakumar R,Soman K P,Poornachandran P.Applying convolutional neural network for network intrusion detection[C]. 2017 International Conference on Advances in Computing,Communications and Informatics(ICACCI).IEEE,2017:1222-1228.
[6] Çakmakç S,Kemmerich T,Ahmed T,et al.Online DDoS attack detection using Mahalanobis distance and Kernel-based learning algorithm[J]. Journal of Network and Computer Applications,2020,168:102756.
[7] Hosseini S,Azizi M.The hybrid technique for DDoS detection with supervised learning algorithms[J]. Computer Networks,2019,158:35-45.
[8] Tonkal Ö,Polat H,Ba 瘙 塂 aran E,et al.Machine learning approach equipped with neighbourhood component analysis for DDoS attack detection insoftware-defined networking[J]. Electronics,2021,10(11):1227.
[9] Sahoo K S,Tripathy B K,Naik K,et al.An evolutionary SVM model for DDOS attack detection in software defined networks[J]. IEEE access,2020,8:132502-132513.
[10] Cil A,Yildiz K,Buldu A.Detection of DDoS attacks with feed forward based deep neural network model[J]. Expert Systems with Applications,2021,169:114520.
[11] Doriguzzi-Corin R,Millar S,Scott-Hayward S,et al.LUCID:A practical,lightweight deep learning solution for DDoS attack detection[J]. IEEE Transactions on Network and Service Management,2020,17(2):876-889.
[12] Lee S,Shiue Y,Cheng C,et al.Detection and prevention of DDoS attacks on the IoT[J]. Applied Sciences,2022,12(23):12407.
[13] Li Y,Lu Y.LSTM-BA:DDoS detection approach combining LSTM and Bayes[C]. 2019 seventh international conference on advanced cloud and big data(CBD).IEEE,2019:180-185.
[14] Novaes M,Carvalho L,Lloret J,et al.Long short-term memory and fuzzy logic for anomaly detection and mitigation in software-defined network environment[J]. IEEE Access,2020,8:83765-83781.
[15] Wang J,Wang L.SDN-Defend:a lightweight online attack detection and mitigation system for DDoS attacks in SDN[J]. Sensors,2022,22(21):8287.
[16] Shieh C,Nguyen T,Horng M.Detection of unknown ddos attack using convolutional neural networks featuring geometrical metric[J]. Mathematics,2023,11(9):2145.
[17] Mustapha A,Khatoun R,Zeadally S,et al.Detecting DDoS attacks using adversarial neural network[J]. Computers & Security,2023,127:103117.
[18] 白坚镜,顾瑞春,刘清河.SDN环境中基于Bi-LSTM的DDoS攻击检测方案[J]. 计算机工程与科学,2023,45(2):277-285.
[19] 罗逸涵,程杰仁,唐湘滟,等.基于自适应阈值的DDoS攻击态势预警模型[J]. 浙江大学学报(工学版),2020,54(4):704-711.
[20] 郭三田,柳毅.一种类平衡和CNN结合的网络入侵检测方法[J]. 计算机应用与软件,2023,40(7):326-332.
[21] Sun W,Li P,Liu Z,et al.LSTM based link quality confidence interval boundary prediction for wireless communication in smart grid[J]. Computing,2021,103(2):251-269.
[22] Lei M,Wei H,Ke L.Photovoltaic ultra-short term power prediction model based on Attention-LSTM[J]. Electrical measurement and instrument,2021,58:146-152.
[23] Zhang X,Liang X,Zhi A,et al.At-lstm:An attention-based lstm model for financial time series prediction[C]. IOP Conference Series:Materials Science and Engineering.IOP Publishing,2019,569(5):052037.
[24] Prasad M,Babu V,Amarnath C.Machine learning ddos detection using stochastic gradient boosting[J]. Int.J.Comput.Sci.Eng,2019,7(4):157-16.
[25] Jazi H,Gonzalez H,Stakhanova N,et al.Detecting HTTP-based application layer DoS attacks on web servers in the presence of sampling[J]. Computer Networks,2017,121:25-36.
[26] Sharafaldin I,Lashkari A,Ghorbani A.Toward generating a new intrusion detection dataset and intrusion traffic characterization[J]. ICISS,2018,1:108-116.

相似文献/References:

[1]田 娟,方国强,何星庭,等.基于网络安全态势感知的四川气象信息网络检测防御技术研究[J].成都信息工程大学学报,2024,39(02):178.[doi:10.16836/j.cnki.jcuit.2024.02.008]
 TIAN Juan,FANG Guoqiang,HE Xingting,et al.Research on Sichuan Meteorological Information Network Detection and Defense Technology based on Network Security Situation Awareness[J].Journal of Chengdu University of Information Technology,2024,39(04):178.[doi:10.16836/j.cnki.jcuit.2024.02.008]

备注/Memo

收稿日期:2024-10-30
基金项目:国家自然科学基金资助项目(62172342)
通信作者:张新有.E-mail:xyzhang@swjtu.edu.cn

更新日期/Last Update: 2025-08-31