PDF下载 分享
[1]邓 俊,王 敏.基于Transformer的语句级软件漏洞检测方案[J].成都信息工程大学学报,2025,40(04):428-433.[doi:10.16836/j.cnki.jcuit.2025.04.003]
 DENG Jun,WANG Min.Statement-level Software Vulnerability Detection Solution based on Transformer[J].Journal of Chengdu University of Information Technology,2025,40(04):428-433.[doi:10.16836/j.cnki.jcuit.2025.04.003]
点击复制

基于Transformer的语句级软件漏洞检测方案

参考文献/References:

[1] 邓枭,叶蔚,谢睿,等.基于深度学习的源代码缺陷检测研究综述[J]. 软件学报,2023,34(2):625-654.
[2] Yamaguchi F,Golde N,Arp D,et al.Modeling and discovering vulnerabilities with code property graphs[C]. 2014 IEEE Symposium on Security and Privacy.IEEE,2014:590-604.
[3] Li Z,Zou D,Xu S,et al.Vuldeepecker:A deep learning-based system for vulnerability detection[J]. arXiv preprint arXiv:1801.01681,2018.
[4] Fu M,Tantithamthavorn C.Linevul:A transformer-based line-level vulnerability prediction[C]. Proceedings of the 19th International Conference on Mining Software Repositories.2022:608-620.
[5] Feng Z,Guo D,Tang D,et al.Codebert:A pre-trained model for programming and natural languages[J]. Findings of the Association for Computational Linguistics.EMNLP 2020:1536-1547.
[6] Guo D,Ren S,Lu S,et al.Graphcodebert:Pre-training code representations with data flow[C]. International Conference on Learning Representations,2021:3-7.
[7] 吴芳.基于深度学习的二进制程序漏洞分析与检测方法研究[D]. 北京:北京交通大学,2018.
[8] 顾绵雪,孙鸿宇,韩丹,等.基于深度学习的软件安全漏洞挖掘[J]. 计算机研究与发展,2021,58(10):2140-2162.
[9] Li X,Wang L,Xin Y,et al.Automated software vulnerability detection based on hybrid neural network[J]. Applied Sciences,2021,11(7):3201.
[10] Zou D,Wang S,Xu S,et al.μVulDeePecker:A Deep Learning-Based System for Multiclass Vulnerability Detection[J]. IEEE Transactions on Dependable and Secure Computing,2019,18(5):2224-2236.
[11] Mikolov T,Sutskever I,Chen K,et al.Distributed representations of words and phrases and their compositionality[J]. Advances in neural information processing systems,2013,26.
[12] Liu Z,Lin W,Shi Y,et al.A robustly optimized BERT pre-training approach with post-training[C]. China National Conference on Chinese Computational Linguistics.Cham:Springer International Publishing,2021:471-484.
[13] Kool W,Van Hoof H,Welling M.Attention,learn to solve routing problems[J]. arXiv preprint arXiv:1803.08475,2018.
[14] Fan J,Li Y,Wang S,et al.AC/C++ code vulnerability dataset with code changes and CVE summaries[C]. Proceedings of the 17th International Conference on Mining Software Repositories.2020:508-512.
[15] Li Y,Wang S,Nguyen T N.Vulnerability detection with fine-grained interpretations[C]. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.2021:292-303.
[16] Hin D,Kan A,Chen H,et al.LineVD:Statement-level vulnerability detection using graph neural networks[C]. Proceedings of the 19th International Conference on Mining Software Repositories.2022:596-607.
[17] Li Z,Zou D,Xu S,et al.Sysevr:A framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing,2021,19(4):2244-2258.
[18] Zhou Y,Liu S,Siow J,et al.Devign:Effective vulnerability identification by learning comprehensive program semantics via graph neural networks[J]. Advances in neural information processing systems,2019,32.

相似文献/References:

[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
 LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(04):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
 HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(04):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(04):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
 RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(04):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
 ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(04):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
 TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(04):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(04):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[8]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
 LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(04):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[9]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
 MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(04):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[10]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
 REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(04):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]

备注/Memo

收稿日期:2024-01-08
基金项目:国家社会科学基金资助项目(23BSH061); 四川省科技计划资助项目(2023YFG0292、2021ZYD0011)
通信作者:王敏.E-mail:wmcuit@cuit.edu.cn

更新日期/Last Update: 2025-08-31