XIE Yifei,DENG Xiaobo,HUANG Qihong,et al.Radiation Sensitivity of Atmospheric Oxygen Absorption Line based on Occultation Observations[J].Journal of Chengdu University of Information Technology,2025,40(04):472-477.[doi:10.16836/j.cnki.jcuit.2025.04.010]
基于掩星观测的大气氧气吸收线辐射敏感性研究
- Title:
- Radiation Sensitivity of Atmospheric Oxygen Absorption Line based on Occultation Observations
- 文章编号:
- 2096-1618(2025)04-0472-06
- 分类号:
- TN967.1
- 文献标志码:
- A
- 摘要:
- 掩星观测具有垂直分辨率高、稳定性好的特点。通过利用氧气A、B带具有恒定垂直混合比这一特征,可应用于大气温湿度、密度廓线的精确反演。采用SCIATRAN模型进行10~50 km高度氧气吸收线的直射辐射能量计算,构建太阳直射光高光谱探测正演模型。模拟不同仪器响应函数、不同大气标准下及不同大气成分和气溶胶对氧气A、B带透过率的影响,分析不同条件下氧气辐射透过率的规律。研究结果表明:不同仪器响应函数会对氧气吸收线峰值处波长产生±7%的频谱漂移影响; 切高越高,气温越低,则氧气吸收线辐射透过率越高。并通过实验模拟数据和产品实测数据的对比,验证了SCIATRAN辐射正演模型的可靠性和有效性。
- Abstract:
- Occultation observations have the characteristics of high vertical resolution and good stability.By utilizing the constant vertical mixing ratio of oxygen A and B bands,they can be applied to the accurate retrieval of atmospheric temperature,humidity,and density profiles.In this study,the SCIATRAN model was used to calculate the direct solar radiation energy of oxygen absorption lines in the altitude range of 10-50 km,and a solar direct spectral detection forward model was constructed.The effects of different instrument response functions,different atmospheric standards,and different atmospheric components and aerosols on the transmittance of oxygen A and B bands were simulated,and the laws of oxygen radiation transmittance under different conditions were analyzed.The results show that different instrument response functions can cause a spectral shift of ±7% at the peak wavelength of oxygen absorption lines; the higher the tangent height,the higher the transmittance of oxygen absorption lines; and the lower the temperature,the higher the transmittance of oxygen absorption lines.This study also verified the reliability and effectiveness of the SCIATRAN radiation forward model through the comparison of experimental simulation data and product measurement data.
参考文献/References:
[1] HAYS P B,R G Roble.Atmospheric Properties From Inversion of Planetary Occultation Data[J]. Planetary and Space Science,1961,16(9):1197-1198.
[2] Veitel H,Funk O,Kurz C,et al.Geometrical Path Length Probability Density Functions of the Skylight Transmitted by Midlatitude Cloudy Skies:Some Case Studies[J]. Geophysical Research Letters,1998,25:3355-3358.
[3] Reber C A,Trebathan C E,McNeal R J,et al.The upper atmosphere research satellite(UARS)mission[J]. Geophysical Research Letters:Atmospheres,1993.98(D6):10643-10647.
[4] Nakajima T,King M D.Determination of the Optical Thickness and Effective Particle Radius of Cloud from Reflected Solar Radiation Measurement.Part 1:Theory[J]. Journal of the Atmospheric Sciences,1990,47:1878-1893.
[5] Fischer J,Cordes W,Schmizpeiffer A,et al.Detection of Cloud-top Height from Back scattered Radiances within the oxygen A Band.Part 2:Measurements[J]. Journal of Applied Meteorology,1991,30:1260-1267.
[6] Fischer J,Grassl H.Detection of Cloud-top Height from Back scattered Radiances within the Oxygen A Band.Part 1:Theoretical Study[J]. Journal of Applied Meteorology,1991,30:1260-1267.
[7] Kuze A,Chance K V.Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands[J]. Geophys Res,1994,99:14481-14491.
[8] Koelemeijer R B A,Stammes P,Hovenier J W,et al.A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment[J]. Geophys Res,2001,106:3475-3490.
[9] Caroline Rebecca Nowlan.Atmospheric temperature and pressure measurements from the ACE-MAESTRO space instrument[D]. Toronto:University of Toronto,2006.
[10] 叶松,甘永莹,熊伟,等.基于SCIATRAN模型的大气CO2敏感性分析[J]. 红外与激光工程,2018,47(7):1-6.
[11] 曹西凤,李小英,罗琪,等.星载红外高光谱传感器温度廓线反演综述[J]. 遥感学报,2021,25(2):577-598.
[12] Werner G.Gurlit,User Guide for the Software Package SCIATRAN[Z]:Institute of Remote Sensing University of Bremen,Germany,2021.
[13] 游峰.基于掩星模式的临近空间大气温压廓线的星间差分吸收激光探测方法研究[D]. 上海:中国科学院上海技术物理研究所,2018.
[14] 王胜国,许丽人,何亿强,等.临近空间大气环境探测技术综述[C]. 地球物理环境与国家安全.西安:西安地图出版社,2014:19-25.
[15] 孙明晨.临近空间大气星光掩星技术研究[D]. 北京:中国科学院国家空间科学中心,2021.
[16] 宗鹏飞,张记龙,王志斌,等.氧气A带红外辐射不同路径透过率的仿真分析[J]. 激光与红外,2013,43(2):171-175.
[17] Mcelroy C T,Denis Dufour,Caroline Nowlan,et al.The ACE-MAESTRO instrument on SCISAT:description,performance,and preliminary results[J]. Applied Optics,2007,46(20):4341-4356.
[18] Kevin S,Olsen,Geoffrey C,et al.New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy:analysis and validation against ACE-FTS and COSMIC.[J]. Atmospheric Measurement Techniques,2016,9:1063-1082.
[19] Dr remat.Modeling of radiative transfer through aspherical planetary atmosphere:Application to atmospheric trace gasesretrieval from occultation and limb-measurements in UV-Vis-NIR[D]. Universitat Bremen,2001.
[20] Nowlana C R,McElroya C T,Drummonda J R.Measurements of the O2 A- and B-bands for determining temperature and pressure profifiles from ACE-MAESTRO:Forward model and retrieval algorithm.[J]. Journal of Quantitative Spectroscopy & Radiative Transfer.2007,108:371-388.
[21] 王亚鹏.大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究[D]. 北京:中国科学院遥感与数字地球研究所,2017.
[22] 齐瑾,张鹏,张文建,等.基于SCITRAN模型的二氧化氮DOAS反演敏感性试验[J]. 气象学报,2008,66(3):396-404.
备注/Memo
收稿日期:2024-01-30
