LI Cong,DENG Xiaobo,LIU Hailei,et al.Study on Physical Retrieval of CO2 by Satellite Short-Wave Infrared Remote Sensing[J].Journal of Chengdu University of Information Technology,2025,40(04):478-483.[doi:10.16836/j.cnki.jcuit.2025.04.011]
卫星短波红外遥感CO2的物理反演研究
- Title:
- Study on Physical Retrieval of CO2 by Satellite Short-Wave Infrared Remote Sensing
- 文章编号:
- 2096-1618(2025)04-0478-06
- Keywords:
- satellite remote sensing; shortwave Infrared; CO2; physical retrieval
- 分类号:
- TP79
- 文献标志码:
- A
- 摘要:
- CO2是温室效应的主要成因,掌握CO2的浓度及变化可为实现碳中和与碳达峰的双碳目标提供支持。短波近红外通道对近地层CO2浓度变化敏感,通过模拟大气辐射传输的整个物理过程,构建正演模型,并基于最优化方法和牛顿迭代法对GOSAT卫星获取的短波红外辐亮度数据进行处理和分析,实现了对全球范围内CO2浓度的高精度反演。将算法反演的CO2柱平均干空气混合比(XCO2)与GOSAT卫星二级产品和碳柱浓度观测网络TCCON站点XCO2数据进行对比验证。结果表明,算法反演精度为-0.397%,与卫星产品的平均绝对误差为1.32 ppm,相对误差为0.235%; 与TCCON站点数据对比平均绝对误差为1.67 ppm,相对误差为-0.397%,优于1%的应用要求。
- Abstract:
- Carbon dioxide(CO2)is the main cause of the greenhouse effect.Understanding the concentration and change of CO2 can support the realization of carbon neutrality and carbon peaking.Short-wave near-infrared channel is sensitive to changes in CO2 concentration near the ground.By simulating the whole physical process of atmospheric radiation transmission,a forward model is constructed.Based on the optimization method and Newton iteration method,the short-wave infrared radiance data obtained by Greenhouse gases Observing Satellite(GOSAT)are processed and analyzed,and the high-precision inversion of CO2 concentration on a global scale is successfully realized.The CO2 Column average dry air mixing ratio(XCO2)retrieved by the algorithm is compared with the XCO2 data of GOSAT satellite secondary products and total carbon column observing network(TCCON)stations.The results show that the retrieval accuracy of the algorithm is -0.397%,the average absolute error is1.32 ppm and the relative error is 0.235%.Compared with TCCON site data,the average absolute error is1.67 ppm and the relative error is -0.397%,which is better than 1% application requirement.
参考文献/References:
[1] Ballantyne A P,Alden C B,Miller J B,et al.Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years[J]. Nature,2012,488(7409):70-72.
[2] 孟晓阳,张兴赢,周敏强,等.GOSAT卫星二氧化碳遥感产品的验证与分析[J]. 气象,2018,44(10):1306-1317.
[3] 刘毅,王婧,车轲,等.温室气体的卫星遥感——进展与趋势[J]. 遥感学报,2021,25(1):53-64.
[4] Liu Y,Yang D X,Cai Z N.A retrieval algorithm for TanSat XCO2 observation:Retrieval experiments using GOSAT data[J]. Chin Sci Bull,2013,58:1520-1523.
[5] 叶函函,王先华,吴时超,等.高分五号卫星GMI大气CO2反演方法[J]. 大气与环境光学学报,2021,16(3):231-238.
[6] Spurr R,Christi M.The LIDORT and VLIDORT Linearized Scalar and Vector Discrete Ordinate Radiative Transfer Models:Updates in the Last 10 Years[J]. Springer Series in Light Scattering,2019:1-62.
[7] 邓安健,郭海波,胡洁,等.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报,2020,24(3):319-325.
[8] 吴时超.基于中波红外光谱信息的大气CO2反演方法[D]. 合肥:中国科学技术大学,2021.
[9] Buchwitz M,De Beek R,Noel S,et al.Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS:version 0.5 CO2 and CH4 and impact of calibration improvements on CO2 retrieval[J]. Atomspheric Chemistry and Physics,2006,6(9):2727-2751.
[10] Reuter M,Buchwitz M,Schneising O,et al.A simple empirical model estimating atmospheric CO2 background concentrations[J]. Atmos.Meas.Tech,2012,5:1349-1357.
[11] Rodgers C D.Inverse Methods for Atmospheric Sounding:Theory and Practice[M]. World Scientific,Singapore,2000.
[12] 王鼎益,刘冬冬.碳卫星高光谱数据CO2柱浓度反演初步研究[J]. 三峡生态环境监测,2018,3(4):74-81.
[13] O’Brien D M,Polonsky I,Kuze A,et al.Validation of the polarization model for GOSAT[C]. Geophys.Res.,2011.
[14] Crisp D,Bosch H,Brown L,et al.OCO(Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis[C]. Appl.Remote Sens.,2010.
[15] 张连翀,王丝丝,李静,等.中国碳卫星(TanSat)数据产品及国际合作进展[J]. 卫星应用,2023(7):13-17.
[16] 高一博.基于SCIATRAN的中高层OH自由基正演模型构建及反演算法研究[D]. 合肥:安徽师范大学,2017.
[17] Doicu A,Trautman T.Two Linearization methods for atmospheric remote sensing[J]. Quant Spectrosc Radiat Transf,2009,110:477-490.
[18] Wunch D,Toon G C,Blavier J F L,et al.The Total Carbon Column Observing Network[J]. Philos Trans A Math Phys Eng Sci,2011,369(1943):2087-2112.
[19] Rodgers C D.Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J]. Reviews of Geophysics,1976,14(4):609-624.
相似文献/References:
[1]季雨平,邓小波,黄启宏,等.基于卫星数据的西南地区大气CO时空分布特征的分析[J].成都信息工程大学学报,2020,35(06):616.[doi:10.16836/j.cnki.jcuit.2020.06.006]
JI Yuping,DENG Xiaobo,HUANG Qihong,et al.Spatial and Temporal Distribution of Atmospheric CO inSouthwest China based on Satellite Data[J].Journal of Chengdu University of Information Technology,2020,35(04):616.[doi:10.16836/j.cnki.jcuit.2020.06.006]
[2]陈瑶瑶,邓小波,黄启宏,等.基于FY-3D和FY-4A的气温时空融合[J].成都信息工程大学学报,2022,37(03):284.[doi:10.16836/j.cnki.jcuit.2022.03.008]
CHEN Yaoyao,DENG Xiaobo,HUANG Qihong,et al.Temporal and Spatial Fusion of Air Temperature based on FY-3D and FY-4A[J].Journal of Chengdu University of Information Technology,2022,37(04):284.[doi:10.16836/j.cnki.jcuit.2022.03.008]
[3]何 科,白爱娟,胡秀清.基于TC方法青藏高原卫星与ERA5水汽误差分析及融合[J].成都信息工程大学学报,2022,37(04):449.[doi:10.16836/j.cnki.jcuit.2022.04.014]
HE Ke,BAI Aijuan,HU Xiuqing.Analysis and Fusion of Water Vapor Error between Satellite and ERA5 over the Tibetan Plateau based on TC Method[J].Journal of Chengdu University of Information Technology,2022,37(04):449.[doi:10.16836/j.cnki.jcuit.2022.04.014]
备注/Memo
收稿日期:2024-01-15
