PDF下载 分享
[1]胡巽涛,孟献才,刘少清,等.基于特征工程的多尺度纯卷积神经网络的流量异常预测方法[J].成都信息工程大学学报,2025,40(05):589-593.[doi:10.16836/j.cnki.jcuit.2025.05.003]
 HU Xuntao,MENG Xiancai,LIU Shaoqing,et al.A Multi-Scale Pure Convolutional Neural Network based on Feature Engineering for Traffic Anomaly Prediction[J].Journal of Chengdu University of Information Technology,2025,40(05):589-593.[doi:10.16836/j.cnki.jcuit.2025.05.003]
点击复制

基于特征工程的多尺度纯卷积神经网络的流量异常预测方法

参考文献/References:

[1] Zhang H,Huang L,Wu C Q,et al.An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusiondetection in imbalanced dataset[J]. Computer Networks,2020,177:107315.
[2] Kushwah J S,Kumar A,Patel S,et al.Comparative study of regressor and classifier with decision tree using modern tools[J]. Materials Today:Proceedings,2022,56:3571-3576.
[3] Huang S,Cai N,Pacheco P P,et al.Applications of support vector machine(SVM)learning in cancer genomics[J]. Cancer genomics & proteomics,2018,15(1):41-51.
[4] Zhou J,Huang S,Qiu Y.Optimization of random forest through the use of MVO,GWO and MFO in evaluating the stability of underground entry-typeexcavations[J]. Tunnelling and Underground Space Technology,2022,124:104494.
[5] Liu L,Wang P,Lin J,et al.Intrusion detection of imbalanced network traffic based on machine learning and deep learning[J]. Ieee Access,2020,9:7550-7563.
[6] Kunang Y N,Nurmaini S,Stiawan D,et al.Attack classification of an intrusion detection system using deep learning and hyperparameter optimization[J]. Journal of Information Security and Applications,2021,58:102804.
[7] Zhang Z,Zhang Y,Guo D,et al.SecFedNIDS:Robust defense for poisoning attack against federated learning-based network intrusion detection system[J]. Future Generation Computer Systems,2022,134:154-169.
[8] De Souza C A,Westphall C B,Machado R B.Two-step ensemble approach for intrusion detection and identification in IoT and fog computing environments[J]. Computers & Electrical Engineering,2022,98:107694.
[9] Hai T H,Nam L H.A practical comparison of deep learning methods for network intrusion detection[C]. 2021 International Conference on Electrical,Communication,and Computer Engineering(ICECCE).IEEE,2021:1-6.
[10] Chen Y,Ashizawa N,Yeo C K,et al.Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection[J]. Knowledge-Based Systems,2021,224:107086.
[11] Liu Z,Mao H,Wu C Y,et al.A convnet for the 2020s[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2022:11976-11986.
[12] Ren S,Zhou D,He S,et al.Shunted self-attention via multi-scale token aggregation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10853-10862.
[13] Theckedath D,Sedamkar R R.Detecting affect states using VGG16,ResNet50 and SE-ResNet50 networks[J]. SN Computer Science,2020,1:1-7.
[14] Liu Z,Lin Y,Cao Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF international conference on computer vision.2021:10012-10022.
[15] Kim C,Batra R,Chen L,et al.Polymer design using genetic algorithm and machine learning[J]. Computational Materials Science,2021,186:110067.
[16] Waskle S,Parashar L,Singh U.Intrusion detection system using PCA with random forest approach[C]. 2020 International Conference onElectronics and Sustainable Communication Systems(ICESC).IEEE,2020:803-808.
[17] Shahbandayeva L,Mammadzada U,Manafova I,et al.Network Intrusion Detection using Supervised and Unsupervised Machine Learning[C]. 2022 IEEE 16th International Conference on Application of Information and Communication Technologies(AICT).IEEE,2022:1-7.
[18] Xu H,Sun L,Fan G,et al.A Hierarchical Intrusion Detection Model Combining Multiple Deep Learning Models With Attention Mechanism[C]. IEEE Access,2023.
[19] Lin P,Ye K,Xu C Z.Dynamic network anomaly detection system by using deep learning techniques[C]. Cloud Computing-CLOUD 2019:12th International Conference,Held as Part of the Services Conference Federation,SCF 2019,San Diego,CA,USA,June 25-30,2019,Proceedings 12.Springer International Publishing,2019:161-176.

相似文献/References:

[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
 LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(05):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
 HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(05):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
 RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(05):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
 ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(05):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
 TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(05):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(05):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[8]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
 LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(05):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[9]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
 MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(05):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[10]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
 REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
[11]詹鸿辉,程仲汉.基于卷积神经网络的异常流量鉴别方法[J].成都信息工程大学学报,2023,38(06):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
 ZHAN Honghui,CHENG Zhonghan.Identification Method of Abnormal Traffic based on Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(05):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]

备注/Memo

收稿日期:2024-03-25
基金项目:国家自然科学基金资助项目(12105135); 合肥综合性国家科学中心能源研究院资助项目(21KZS208); 高校协同创新资助项目(GXXT-2022-003)
通信作者:刘少清.E-mail:liushaoqing@ie.ah.cn

更新日期/Last Update: 2025-10-31