LI Zimu,BAI Aijuan,WANG Hantao,et al.Research on Wind Speed Prediction in the Canyon Area of the Lower Jinsha River based on Long Short-term Memory Neural Network[J].Journal of Chengdu University of Information Technology,2025,40(05):626-632.[doi:10.16836/j.cnki.jcuit.2025.05.009]
基于长短期记忆神经网络的金沙江下游峡谷区风速预报研究
- Title:
- Research on Wind Speed Prediction in the Canyon Area of the Lower Jinsha River based on Long Short-term Memory Neural Network
- 文章编号:
- 2096-1618(2025)05-0626-07
- Keywords:
- LSTM algorithm; deep learning; canyon; wind speed prediction; gale
- 分类号:
- P457.5
- 文献标志码:
- A
- 摘要:
- 针对金沙江下游深切峡谷区大风频发且风速波动性强、预报难度大的问题,利用2022-2023年地面观测数据和ERA-5再分析数据,采用长短期记忆(LSTM)神经网络的深度学习算法,建立峡谷区未来1 h风速预报模型。模型建立中使用干季、湿季和全年3种数据集方案进行模型训练和预报效果检验。预报模型的检验表明,预报模型能够较好地反映峡谷区小时风速波动,对未来1 h风速的预报效果良好。对比3种数据集方案的风速预报结果,湿季和全年方案较优,预报和实际风速的相关系数分别为0.8和0.9,RMSE分别为1.5 m/s和1.6 m/s。模型对大风的预报效果明显降低,且预报风速低于实际风速,全年数据集方案相对较优,相关系数为0.6,RMSE为2.2 m/s。
- Abstract:
- In response to the challenges of frequent high winds and significant fluctuations in wind speeds in the deeply incised canyon area downstream of the Jinsha River,a wind speed forecasting model for the next hour was developed using ground observation data and ERA-5 reanalysis data from 2022 to 2023.The model employs a deep learning algorithm based on Long Short-term Memory(LSTM)neural networks.Three different datasets -dry season,wet season,and full year-were used for training the model and evaluating its forecasting performance.The evaluation of the forecasting model shows that it effectively captures the hourly wind speed fluctuations in the canyon area and provides good forecasts for wind speeds in the next hour.Comparing the results of the three dataset approaches,the wet season and full-year approaches were superior,with correlation coefficients of 0.8 and 0.9 respectively,and RMSEs of 1.5 m/s and 1.6 m/s respectively.The model’s performance in predicting high winds was notably poorer,with forecasted wind speeds being lower than actual wind speeds.The full-year dataset approach performed relatively better in this regard,with a correlation coefficient of 0.6 and an RMSE of 2.2 m/s.
参考文献/References:
[1] 范维,居志刚.白鹤滩水电站坝区大风特征分析[J]. 人民长江,2017,44(19):32-35.
[2] Bjerknes V.Das Problem der Wettervorhersage,betrachtet vom Standpunkte der Mechanik und der Physik[J]. Meteorologische Zeitschrift,1904,21:1-7.
[3] 陈德辉,薛纪善.数值天气预报业务模式现状与展望[J]. 气象学报,2004(5):623-633.
[4] 杨璐,宋林烨,荆浩,等.复杂地形下高精度风场融合预报订正技术在冬奥会赛区风速预报中的应用研究[J]. 气象,2022,48(2):162-176.
[5] 陈超君,王东海,李国平,等.冬季高海拔复杂地形下GRAPES-Meso要素预报的检验评估[J]. 气象,2012,38(6):657-668.
[6] 吴琼,徐卫民.湖陆山地复杂地形下近地层风速预报研究[J]. 干旱气象,2019,37(3):384-391.
[7] Carvalho D,Rocha A,Gomez-Gesteira M,et al.A sensitivity study of the WRF model in wind simulation for an area of high wind energy[J]. Environmental modelling and software,2012,33:23-34.
[8] 袁咪咪,宫法明,李昕.基于CNN-LSTM的多因素时空风速预测[J]. 计算机系统应用,2021,30(8):133-141.
[9] 石峰,刘向阳.基于混合卷积神经网络算法的风场预测研究[J]. 计算技术与自动化,2023,42(1):129-133.
[10] 李冰,张妍,刘石.基于LSTM的短期风速预测研究[J]. 计算机仿真,2018,35(11):456-461.
[11] 涂安龙,胡萧书萌,邓万雄.基于LSTM的风速预测模型[J]. 信息与电脑(理论版),2021,33(12):142-145.
[12] 李隆,王瑞,张惟皎.基于LSTM的高铁大风预测模型及算法研究[J]. 铁路计算机应用,2021,30(2):18-21.
[13] 修春波,苏欢,苏雪苗.多通道长短期记忆卷积网络的风速预测[J]. 电力工程技术,2022,41(1):64-69.
[14] 尹晔,王汉涛,程志刚,等.大型水电站灾害性大风特征及预报——以白鹤滩水电站为例[M]. 北京:气象出版社,2023:55-60.
[15] 刘兰,刘莉,刘盛梅.2020年6月20日14时至21日石河子大风天气分析[J]. 石河子科技,2021(3):3-5.
[16] 谷思雨,王跃,王晨光,等.安庆机场一次寒潮大风天气过程分析[J]. 气候变化研究快报,2021,10(3):254-259.
[17] 张晓芳,李宇华.春季大风的预报和分析[J]. 黑龙江气象,2010,27(2):11-14.
[18] 谭志强,桑建人,纪晓玲,等.宁夏一次大风扬沙天气过程机制分析[J]. 干旱区地理,2017,40(6):1134-1142.
[19] 周淑玲,单宝臣,盛春岩.山东近海温带气旋强南向大风的特征分析[J]. 海洋通报,2014,33(2):132-139.
[20] 朱智慧,黄宁立.上海沿海WRF模式风速预报的检验和释用[J]. 大气科学研究与应用,2012(2):69-76.
相似文献/References:
[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(05):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(05):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(05):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(05):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(05):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(05):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[8]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(05):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[9]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(05):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[10]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
备注/Memo
收稿日期:2024-03-06
基金项目:国家自然科学基金资助项目(U2242202、U2040212); 中国气象局创新发展专项资助项目(CXFZ2022J012)
通信作者:白爱娟.E-mail:baiaj@cuit.edu.cn
