XIE Feng,XIA Zhiye,LU Xiaoning,et al.Inversion of Anthropogenic Carbon Emissions in Chengdu-Chongqing Area based on WRF-STILT Model[J].Journal of Chengdu University of Information Technology,2025,40(05):739-744.[doi:10.16836/j.cnki.jcuit.2025.05.024]
基于WRF-STILT模型的成渝地区人为碳排放量反演
- Title:
- Inversion of Anthropogenic Carbon Emissions in Chengdu-Chongqing Area based on WRF-STILT Model
- 文章编号:
- 2096-1618(2025)05-0739-06
- Keywords:
- WRF-STILT; Chengdu Chongqing economic circle; CO2 emissions; CO2 concentration; Bayesian inversion
- 分类号:
- X321
- 文献标志码:
- A
- 摘要:
- 城市尺度进行准确的人为碳排放估算,是制定节能减排政策和实现“双碳”目标的关键。成渝经济圈拥有大的人口密度、坚实的产业基础、出色的创新能力、广大的市场空间及高程度的开放性。为估算成渝地区的人为碳排放量,利用2020年5-8月Carbon Tracker全球大气CO2模型估算的CO2浓度数据,结合该数据与WRF-STILT模型及GRACED全球格网化日人为CO2排放数据集,采用“自上而下”的贝叶斯比例因子法限制人为CO2排放通量,并与MEIC中国多尺度排放清单模型同时期CO2通量数据比较。结果表明,限制后的GRACED与MEIC排放数据的误差从0.0317 mg/(m2·s-1)降到0.0193 mg/(m2·s-1)。总的来说,2020年成渝地区夏季人为排放总量呈先上升后下降再上升的趋势,工业排放与电力行业排放随着时间有明显的波动,而民用、地面交通及航运排放较稳定。就成渝地区人为碳排放而言,电力行业与工业排放是人为碳排放的两个主要来源。
- Abstract:
- Accurate estimation of anthropogenic carbon emissions at the city scale is the key to making energy conservation and emission reduction policies and realizing the goal of “double carbon”.Chengdu-Chongqing economic circle is the most densely populated area with the strongest industrial base and the highest degree of openness in southwest China.To estimate anthropogenic Carbon emissions in the Chengdu-Chongqing economic circle,this study used CO2 concentration data estimated by the Carbon Tracker global atmospheric CO2 model from May 2020 to August 2020,combined this data with WRF-STILT model and GRACED global grid day anthropogenic carbon dioxide emission dataset.A “top-down” Bayesian scale factor method was used to limit anthropogenic CO2 emission fluxes,and compared with the CO2 fluxes of the MEIC China multi-scale emission inventory model over the same period.The results showed that the error of GRACED and MEIC emission data after restriction was reduced from0.0317 mg/(m2·s-1)to0.0193 mg/(m2·s-1).In general,the total anthropogenic emissions in the summer of 2020 in the Chengdu-Chongqing economic circle showed a trend of first increasing,then decreasing,and then increasing,and the emissions of the industrial sector and the power sector fluctuated significantly over time.However,emissions from civil,ground transportation and shipping showed a relatively stable phenomenon.In terms of different sectoral CO2 emission categories,power and industrial emissions are the two most important sources of anthropogenic CO2 emissions.
参考文献/References:
[1] Intergovernmental Panel On Climate Change.Climate change2021-the physical science basis:working group i contribution to the sixth assessment report ofthe intergovernmental panel on climate change[M/OL]. Cambridge University Press,2024-04-02.
[2] Kunik L,Mallia D V,Gurney K R,et al.Bayesian inverse estimation of urbanCO2 emissions:results from a synthetic data simulation over salt lake city,ut[J]. Elementa:Science of the Anthropocene,2019,7:36.
[3] Nisbet E,Weiss R.Top-Down Versus Bottom-Up [J]. Science,2010,328(5983):1241-1243.
[4] Han P F,Zeng N,Oda T,et al.Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories[J]. Atmospheric Chemistry and Physics,2020,20(19):11371-11385.
[5] Le Quéré C,Jackson R B,Jones M W,et al.Temporary reduction in daily globalCO2 emissions during the COVID-19 forced confinement[J]. Nature Climate Change,2020,10(7):647-653.
[6] Allahudheen S,Chandra A B,Nayak R K,et al.High-resolution geos-chem model forIndian monsoon region:seasonal cycle and budget of tropospheric CO2[J]. Atmospheric Environment,2023,309:119913.
[7] Cai B,Cui C,Zhang D,et al.China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis [J]. Applied energy,2019,253.
[8] Peters W,Jacobson A R,Sweeney C,et al.An atmospheric perspective on North American carbon dioxide exchange:CarbonTracker[J]. Proceedings of the National Academy of Sciences,2007,104(48):18925-18930.
[9] 张晓春.1994-2014年青海瓦里关二氧化碳浓度日均值[EB/OL]. 国家冰川冻土沙漠科学数据中心(http://www.ncdc.ac.cn),2016. https://cstr.cn/CSTR:11738.11.ncdc.CGAWBO.2020.22.
[10] 马心怡,黄文晶,胡凝,等.基于不同排放清单的长三角人为CO2排放模拟[J]. 环境科学,2023,44(4):2009-2021.
[11] Liu Z,Ciais P,Deng Z,et al.Carbon monitor,a near-real-time daily dataset ofglobal CO2 emission from fossil fuel and cement production[J]. Scientific Data,2020,7(1):392.
[12] Nassar R,Napier Linton L,Gurney K R,et al.Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission datasets[J]. Journal of Geophysical Research:Atmospheres,2013,118(2):917-933.
[13] Li M,Liu H,Geng G,et al.Anthropogenic emission inventories in China:a review[J]. National Science Review,2017,4(6):834-866.
[14] Zheng B,Tong D,Li M,et al.Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics,2018,18(19):14095–14111.
[15] 胡诚,张弥,肖薇,等.基于WRF-STILT模型对高塔CO2浓度的模拟研究[J]. 中国环境科学,2017,37(7):2424-2437.
[16] Lin J C,Gerbig C,Wofsy S C,et al.A near-field tool for simulating the upstream influence of atmospheric observations:the stochastic time-inverted Lagrangian transport(STILT)model[J]. Journal of Geophysical Research:Atmospheres,2003,108(D16).
[17] 凌光,叶鹰.一般正态线性回归模型岭估计的贝叶斯推广[J]. 武汉科技学院学报,2006(11):55-57.
相似文献/References:
[1]徐 诚,淡 嘉,刘绿柳,等.成渝地区气候舒适度特征及未来变化研究[J].成都信息工程大学学报,2023,38(04):472.[doi:10.16836/j.cnki.jcuit.2023.04.015]
XU Cheng,DAN Jia,LIU Lvliu,et al.Study on the Characteristics and Future Changes of Climate Comfort in Chengdu-Chongqing Region[J].Journal of Chengdu University of Information Technology,2023,38(05):472.[doi:10.16836/j.cnki.jcuit.2023.04.015]
备注/Memo
收稿日期:2024-03-04
基金项目:国家统计科学研究重点资助项目(2023LZ033); 四川省社科“十四五”规划资助项目(SC22B155); 四川省科技计划资助项目(2023YFS0383); 四川省自然科学基金资助项目(2023NSFSC0745); 全国大学生创新训练计划资助项目(202310621001)
通信作者:夏志业.E-mail:xiazhiye@cuit.edu.cn
