ZHAO Xin-ning,YU Xin,WU Xi.Improving Genetic Algorithm based on A Hybrid Probabilistic Selector[J].Journal of Chengdu University of Information Technology,2016,(03):247-254.
一种基于混合概率选择算子的改进遗传算法
- Title:
- Improving Genetic Algorithm based on A Hybrid Probabilistic Selector
- 文章编号:
- 2096-1618(2016)03-0247-08
- Keywords:
- computer application; artificial intelligence; genetic Algorithm; multimodal function; gaussian distribution; cauchy distribution; population-Based Algorithm Portfolios
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 遗传算法(genetic algorithm,GA)已被成功应用于求解实值优化问题,但其在求解多峰实值优化问题时面临收敛较慢和早熟收敛的问题。为解决该问题,提出一种基于高斯分布和柯西分布的概率选择算子。算子在执行选择操作时,分别根据当前种群生成高斯和柯西分布,通过对分布采样获得参加遗传操作的个体,从而在保证选择压力的同时保持一定程度的种群多样性,避免早熟收敛。此外,基于种群算法投资组合(population-based algorithm portfolios,PAP)策略,同时利用2种概率选择算子的优势,采用2个子种群并行搜索,提高算法在多种不同问题上的求解性能。在一系列多峰实值优化问题上的测试结果表明,文中提出的改进方法能够显著提高遗传算法在收敛速度和求解精度两方面的性能。
- Abstract:
- Genetic Algorithms(GA)have been applied to numerical optimization problems successfully. However, they are confronted with slow convergence and prematurity. Therefore, this paper proposes a hybrid probabilistic selector for a real-encoded GA based on Gaussian and Cauchy distributions. During the selection operation, a Gaussian and a Cauchy distribution are generated based on the selected groups of current population respectively. Then candidate individuals for genetic operations are generated by sampling the two distributions respectively. With the proposed selector, the selection pressure is guaranteed while a certain diversity is maintained which is beneficial to avoidance of prematurity. Furthermore, in order to improve the overall performance of GAs on a wide range of problems, two sub-populations, equipped with Gaussian and Cauchy based selectors respectively, are run parallel by adopting the strategy of Population-Based Algorithm Portfolios(PAP). Experimental results on a set of numerical optimization problems show that the proposed approach can significantly increase the performance of GAs with respect to the convergence rate and the solution quality.
参考文献/References:
[1] Holland J H. Adaptation in Natural and Artificial Systems [M]. Ann Arbor: The University of Michigan Press, 1975.
[2] Goldberg D E. Genetic algorithm in search, optimization and machine learning [M].Massachusetts: Addison-Wesley, 1989.
[3] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999.
[4] Vasconcelos J A, Ramirez J A, Takahashi R H C. Improvements in Genetic Algorithms [J]. IEEE Transactions on Magnetics, 2002: 3414-3417.
[5] Janikow C Z,Michalewicz Z A specialized genetic algorithm for numerical optimization problems [C].Proc of Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, Herndon, VA: IEEE, 1990: 798-804.
[6] Jianwu Li, Yao Lu.An Efficient Real-Coded Genetic Algorithm for Numerical Optimization Problems [C].Proc of third International Conference on Natural Computation, Haikou: IEEE, 2007: 760-764.
[7] Xin Yao, Yong Liu, Guangming Lin.Evolutionary Programming Made Faster [J]. IEEE Transactions on Evolutionary Computation, 1999,3(2):82-102.
[8] 陈有青, 徐蔡星, 钟文亮. 一种改进选择算子的遗传算法[J]. 计算机工程与应用, 2008,44(2):44-49.
[9] 谢柏桥, 戴光明, 石红玉. 一种改进的求解约束函数优化问题的演化算法[J]. 计算机应用与软件, 2008,25(7):48-50.
[10] Fei Peng, Ke Tang,Guoliang Chen. Population-Based Algorithm Portfolios for Numerical Optimization [J]. IEEE Transactions on Evolutionary Computation, 2010,14(5):782-800.
[11] Jarno Martikainer, Seppo J. Ovaska. Hierarchical two-population genetic algorithm [C].Proc of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, Espoo: IEEE, 2005: 91-98.
[12] Taejin Park, Kwang Ryel Ryu. A Dual-Population Genetic Algorithm for Adaptive Diversity Control [J]. Evolutionary Computation, IEEE, 2010,14(6):865-884.
[13] Doraghinejad M, Nezamabadi-pour H, Hashempour Sadeghian A. A hybrid algorithm based on gravitational search algorithm for unimodal optimization [C].Proc of 2012 2nd International eConference on Computer and Knowledge Engineering. Mashhad: IEEE, 2012: 129-132.
[14] 于蕾蕾. 双种群遗传算法的改进及其应用研究[D]. 合肥: 合肥工业大学, 2009.
[15] 张群超, 郑建国, 钱洁. 遗传算法编码方案比较[J]. 计算机应用研究, 2011,28(3):819-822.
[16] Herrera F, Lozano M, Verdegay J.L.Tackling real-coded genetic algorithms: operators and tools for behavioural analysis [J]. Kluwer Academic Publishers, 1998,12(4):265-319.
[17] 任浩, 毛玉泉, 李思佳. Gauss随机变量产生方法的比较研究[J]. 船舶电子工程, 2010,30(12):87-90.
相似文献/References:
[1]崔栋才,胡志恒.一种用于6LoWPAN的低功耗路由协议[J].成都信息工程大学学报,2018,(01):28.[doi:10.16836/j.cnki.jcuit.2018.01.006]
CUI Dong-cai,HU Zhi-heng.A Low-power Routing Protocol for 6LoWPAN[J].Journal of Chengdu University of Information Technology,2018,(03):28.[doi:10.16836/j.cnki.jcuit.2018.01.006]
[2]张 超,孙绩华,段 玮.云南区域站降水资料利用Surfer软件实现Cressman插值的研究[J].成都信息工程大学学报,2018,(01):84.[doi:10.16836/j.cnki.jcuit.2018.01.015]
ZHANG Chao,SUN Ji-hua,DUAN Wei.Research on Cressman Interpolation using Surfer Software based onPrecipitation data of Yunnan Regional Station[J].Journal of Chengdu University of Information Technology,2018,(03):84.[doi:10.16836/j.cnki.jcuit.2018.01.015]
[3]陈 琳,李 容.基于动态Web的Python多线程空气质量数据程序设计[J].成都信息工程大学学报,2016,(02):180.
CHEN Lin,LI Rong.Python Multithreaded Air Pollution Products Program based on Dynamic Web[J].Journal of Chengdu University of Information Technology,2016,(03):180.
[4]杨馥溢,杨 璐,魏 敏,等.星空背景的多运动小目标检测方法[J].成都信息工程大学学报,2016,(06):583.
YANG Fu-yi,YANG Lu,WEI Min,et al.The Method for Multi-Moving Small Target under Celestial Background[J].Journal of Chengdu University of Information Technology,2016,(03):583.
[5]张广超,马尚昌,张素娟.降水现象仪模拟软件设计与实现[J].成都信息工程大学学报,2016,(06):588.
YANG Fu-yi,YANG Lu,WEI Min,et al.The Method for Multi-Moving Small Target under Celestial Background[J].Journal of Chengdu University of Information Technology,2016,(03):588.
[6]韦晶晶,李国平.一次东南路径西南低涡引发广西强降水的
湿位涡和二阶湿位涡特征[J].成都信息工程大学学报,2016,(06):592.
WEI Jing-jing,LI Guo-ping.Characteristic of Moist Potential Vorticity and Second Order Moist
Potential Vorticity of Heavy Rainfall over Guangxi Cause by
Southwest Vortex of Southeast Path[J].Journal of Chengdu University of Information Technology,2016,(03):592.
[7]孙蓓蕾,陈高云.基于多策略的个性化智能组卷的研究[J].成都信息工程大学学报,2016,(03):261.
SUN Bei-lei,CHEN Gao-yun.Studies on the Intelligent Composing Paper with Multi-strategy and Individuality[J].Journal of Chengdu University of Information Technology,2016,(03):261.
[8]王 帅,喻 歆,何 嘉.基于MPI和OpenMP的排序算法并行优化研究[J].成都信息工程大学学报,2016,(03):277.
WANG Shuai,YU Xin,HE Jia.The Performance Analysis of Sorting Algorithms based on MPI and OpenMP[J].Journal of Chengdu University of Information Technology,2016,(03):277.
[9]陈 夏,王海江,周淑玥,等.基于人工智能的冰雹天气识别方法研究[J].成都信息工程大学学报,2021,36(05):512.[doi:10.16836/j.cnki.jcuit.2021.05.007]
CHEN Xia,WANG Haijiang,ZHOU Shuyue,et al.A Hail Weather Recognition Method based on Artificial Intelligence[J].Journal of Chengdu University of Information Technology,2021,36(03):512.[doi:10.16836/j.cnki.jcuit.2021.05.007]
[10]吴嘉巍,何 杰,唐雨淋.基于人工智能的无线电信号调制方式识别[J].成都信息工程大学学报,2024,39(04):430.[doi:10.16836/j.cnki.jcuit.2024.04.006]
WU Jiawei,HE Jie,TANG Yulin.Recognition of Wireless Radio Signal Modulation Methods based on Artificial Intelligence[J].Journal of Chengdu University of Information Technology,2024,39(03):430.[doi:10.16836/j.cnki.jcuit.2024.04.006]
备注/Memo
收稿日期:2016-03-28 基金项目:国家重点基础研究发展计划(973计划)资助项目(2014CB360500,2014CB360506)