YANG Fu-yi,YANG Lu,WEI Min,et al.The Method for Multi-Moving Small Target under Celestial Background[J].Journal of Chengdu University of Information Technology,2016,(06):583-587.
星空背景的多运动小目标检测方法
- Title:
- The Method for Multi-Moving Small Target under Celestial Background
- 文章编号:
- 2096-1618(2016)06-0583-05
- Keywords:
- computer application; image processing; difference; multi-object; dilate; bninary filter; track detection
- 分类号:
- TP399
- 文献标志码:
- A
- 摘要:
- 针对星空背景运动弱小目标检测,提出一种基于图像帧间差分的弱小目标检测方法。该方法在差分的同时利 用帧间像素值的关系增强差分后的结果,采用基于约束点的自适应均值+K倍方差的方法进行图像分割,对分 割后的结果用二值滤波进行目标聚类和去除孤立噪声点; 然后标记得到目标位置、大小、灰度和外接矩形等特征; 最后将标记的候选目标与上一帧图像标记的全图目标进行重合度判断去掉残留背景星边缘,将最终得到的候选目标 作为后续航迹检测的输入。实验证明,提出的方法既能有效地抑制背景恒星,又能增强弱小目标信号,最后送航迹关 联的候选目标很少,一般控制在20个左右,目标航迹测效率高。因此,该方法是一种简单有效的小目标检测方法。
- Abstract:
- To solve the problem of detecting moving targets under celestial background, a multi- Objective detecting method base on difference was proposed. The algorithm uses the improved difference to suppress the background stars, and enhance small targets at same time, then use adaptive threshold to segment image and binary filter to eliminate isolated noise, after these processes, mark current and previous image to get target's features: position, size, gray and contour-rectangle, finally, use coincidence degree between current and previous frame marked targets to acquire the candidate targets, Experiments show that: this multi-objective detecting algorithm is simple and efficient because it can get rid of background stars efficiently and enhance small target signal at the same time, the candidate targets are inputted to track association is limited in 20(2K*2K image, thousands of stars).
参考文献/References:
[1] 傅平. CCD图像传感器拖尾的研究[J].压电与声光,2004,26(1):72-75.
[2] 潘翔.运动目标检测[D].杭州:浙江大学,2003.
[3] 周卫祥,孙德宝,彭嘉雄.红外图像序列运动小目标检测的预处理算法研究[J]. 国防科技大学学报,
1999,21(5):57-60.
[4] 王卫华,何艳,陈曾平.光电图像序列运动弱小目标实时检测算法[J].光电工程,2006,33(4):15-16.
[5] Stauffer C, Grimson W.Adaptive background mixture models for real-time tracking
[J].proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
1999,6(2):248-252.
[6] 向昌成. PCA分块结合高通滤波的多聚焦图像融合研究[J]. 计算机与现代化,2010,(5).
[7] Jia-guu Leu.A Computer Vision Process to Detect and Track Space Debris Using Ground-Based
Optical Telephoto Images[C].Computer Vision and Applications,Preceedings, The Hague, Netherlands,
Aug 30-Sep3,1992,I:522-525.
[8] Eff Houchard, Paul Kervin, John Africano.et al. Orbital debris detection program
highlights from the Air Force Maui Optical Station[C]. Space Instrumentation and Dual-Use
Technologies, Orlando, USA, Jue 8, 1994, 2214:7-20.
[9] 魏敏,文武,周进,等.配准差分在深空小目标检测中的应用[J].光电工程,2015,42(11):76-82.
[10] LI Xiaoyan, ZHUANG Fuqiang, WANG Dai,et al. Derotation device of groud-based
telescope,China:201210344436 [P]. 2012.
[11] GUO Peng. Study of telescope's derotation system [D]. Changchun:Changchun Institute of
Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,2013:10-11.
[12] BAI Xiangzhi. Morphological operator for infrared dim small target enhancement using
dilation and erosion through structuring element construction [J]. Optik(S0030-4026),2013,124:6163
-6166.
[13] LI Zhengzhou. Research on the Technique of Real Time Detecting and Tracking Small Dim
Moving Target [D]. Chengdu:Institute of Optical and Electrical of Chinese Academy of
Sciences,2004:89-90.
[14] ZHOU Jin,WU Qinzhang. A real-time dim target detection algorithm in large field and deep
sky [J]. Optical Technical,2006,32(1):134-137.
[15] 杨卫平.空间红外成像制导信息处理技术研究[D].长沙:国防科大,1998.
相似文献/References:
[1]崔栋才,胡志恒.一种用于6LoWPAN的低功耗路由协议[J].成都信息工程大学学报,2018,(01):28.[doi:10.16836/j.cnki.jcuit.2018.01.006]
CUI Dong-cai,HU Zhi-heng.A Low-power Routing Protocol for 6LoWPAN[J].Journal of Chengdu University of Information Technology,2018,(06):28.[doi:10.16836/j.cnki.jcuit.2018.01.006]
[2]张 超,孙绩华,段 玮.云南区域站降水资料利用Surfer软件实现Cressman插值的研究[J].成都信息工程大学学报,2018,(01):84.[doi:10.16836/j.cnki.jcuit.2018.01.015]
ZHANG Chao,SUN Ji-hua,DUAN Wei.Research on Cressman Interpolation using Surfer Software based onPrecipitation data of Yunnan Regional Station[J].Journal of Chengdu University of Information Technology,2018,(06):84.[doi:10.16836/j.cnki.jcuit.2018.01.015]
[3]陈 琳,李 容.基于动态Web的Python多线程空气质量数据程序设计[J].成都信息工程大学学报,2016,(02):180.
CHEN Lin,LI Rong.Python Multithreaded Air Pollution Products Program based on Dynamic Web[J].Journal of Chengdu University of Information Technology,2016,(06):180.
[4]赵鑫宁,喻 歆,吴 锡.一种基于混合概率选择算子的改进遗传算法[J].成都信息工程大学学报,2016,(03):247.
ZHAO Xin-ning,YU Xin,WU Xi.Improving Genetic Algorithm based on A Hybrid Probabilistic Selector[J].Journal of Chengdu University of Information Technology,2016,(06):247.
[5]孙蓓蕾,陈高云.基于多策略的个性化智能组卷的研究[J].成都信息工程大学学报,2016,(03):261.
SUN Bei-lei,CHEN Gao-yun.Studies on the Intelligent Composing Paper with Multi-strategy and Individuality[J].Journal of Chengdu University of Information Technology,2016,(06):261.
[6]王 帅,喻 歆,何 嘉.基于MPI和OpenMP的排序算法并行优化研究[J].成都信息工程大学学报,2016,(03):277.
WANG Shuai,YU Xin,HE Jia.The Performance Analysis of Sorting Algorithms based on MPI and OpenMP[J].Journal of Chengdu University of Information Technology,2016,(06):277.
[7]甘建红,李 炜.M型超声心动图中左室射血分数自动计算方法[J].成都信息工程大学学报,2021,36(06):624.[doi:10.16836/j.cnki.jcuit.2021.06.007]
GAN Jianhong,LI Wei.Automatic Calculation Method of Left Ventricular Ejection Fraction in M-mode Echocardiography[J].Journal of Chengdu University of Information Technology,2021,36(06):624.[doi:10.16836/j.cnki.jcuit.2021.06.007]
[8]张广超,马尚昌,张素娟.降水现象仪模拟软件设计与实现[J].成都信息工程大学学报,2016,(06):588.
YANG Fu-yi,YANG Lu,WEI Min,et al.The Method for Multi-Moving Small Target under Celestial Background[J].Journal of Chengdu University of Information Technology,2016,(06):588.
[9]韦晶晶,李国平.一次东南路径西南低涡引发广西强降水的
湿位涡和二阶湿位涡特征[J].成都信息工程大学学报,2016,(06):592.
WEI Jing-jing,LI Guo-ping.Characteristic of Moist Potential Vorticity and Second Order Moist
Potential Vorticity of Heavy Rainfall over Guangxi Cause by
Southwest Vortex of Southeast Path[J].Journal of Chengdu University of Information Technology,2016,(06):592.
备注/Memo
收稿日期:2016-10-08 基金项目:四川省科技计划资助项目(2012GZ0111); 四川省教育厅基金资助项目(2014ZA0176)