PDF下载 分享
[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1-6.
点击复制

基于混合自动编码器的分类应用

参考文献/References:

[1] 高振涛.判别自动编码机在分类问题中的应用[M].成都:四川大学出版社,2015.
[2] Cortes C,Vapnik V.Support-Vector Networks[J].Machine Learning,1995,20(3):273-297.
[3] Safavian S R, Landgrebe D. A survey of decision treeclassifier methodology[J], 1990.
[4] Liaw A,Wiener M.Classification and regression by randomForest[J].R news,2002,2(3):18-22.
[5] Elkan C.Boosting and naive Bayesian learning[R].Technical Report CS97-557,University of California,San Diego,1997.
[6] Arel L,Rose D C,Karnowski T P. Deep machine learning a new frontier in artificial intelligence research[J].Computational Intelligence Magazine,2010,5(4):13-18.
[7] Hinton G E, Osinder S, The Y W. A fast learing algorithm for deep belief nets[J]. Neural Computation, 2006,18(7):1527-1554.
[8] Bengio Y. Learning deep architectures for AI[J]. Foundations and trends in Machine Learning, 2009, 2(1): 1-127.
[9] 倪嘉成,许悦雷,马时平,等.结合侧抑制机制的自动编码器训练新算法[J].计算机应用与软件,2015,(9).
[10] 王雅思.深度学习中的自编码器的表达能力研究[D].哈尔滨:哈尔滨工业大学,2014.
[11] 王勇,赵俭辉,章登义,等.基于稀疏自编码深度神经网络的林火图像分类[J].计算机工程与应用,2014,50(24).
[12] Bengio Y, Lamblin P, Popovici D, et al. Greedy layerwise training of deep networks[C]. Proc. of the 20th Annual Conference on Neural Information Procesing System. 2006:153-160.
[13] Vincent p,Larochelle H,Bengio Y.Extracting and composing robust features with denoising auto-encoder[C].Proc. of the 25th International Conference on Machine Learning.2008:1096-1103.
[14] Salalh R,Vincent P,Muller X,et al.Contractive auto-encoders:Explicit invariance during feature extractiong[C].Proc.of the 28th International Conference on Machine Learning.2011:833-840.
[15] Masci J,Meier U,Ciresan D.Stacked convolutional auto-encoders for hierachical feature extraction[C].Proc. of the 21h International Conference on Artifical Neural Networks.2011,6791:52-59.
[16] Arnold L,Paugam Moidy H,Sebag M.Unsupervised layerwise model selection in deep neural networks[J]. Journal of Machine Learning Research,2010,6(3): 610-634.
[17] Erahan D, Bengio Y, Courville A, et al. Why does unsupervised pre-traininghelp deep learning[J]. Journal of Machine Learning Research,2010,1(5):625-660.
[18] Eehan D, Manzagol P, Bengio Y, et al. The difficulty of training deep architectures and the effect of unsupervised pretraining[C]./Proc of the 12th International Conference on Artificial Intelligence and Statistics. 2009: 153-160.
[19] 胡侯立,魏维,谢青松。深层自动编码机的文本分类算法改进[J].计算机应用研究,2015,32(4).
[20] Ng A, Ngiam J, Foo C Y, et al. UFLDL tutorial. 2012.
[21] Deep Learning Tutorial[EB/OL].http://deeplearning.net/tutorial/deeplearning.pdf.
[22] Lecun Y, Cortes C. The MNIST database of handwritten digits,1998.
[23] S A Nene, S K Nayar,H Murase.Technical Report CUCS-005-96,Columbia Object Image Library(COIL-20),February 1996.
[24] David J. Slate,Odesta Corporation; Letter Recognition Dataset of the Machine Learning Repository, 1890.
[25] Peter W Frey,David J Slate. Letter recognition using holland-style adaptive calssifiers[J]. Machine Learning,1991,(6):161-182.

相似文献/References:

[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(增刊1):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(增刊1):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[3]胡 华,郭 非.跨语言无监督依存分析方法研究[J].成都信息工程大学学报,2017,(增刊2):21.
[4]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(增刊1):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(增刊1):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(增刊1):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[7]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(增刊1):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[8]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(增刊1):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[9]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(增刊1):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]

备注/Memo

收稿日期:2016-02-19

更新日期/Last Update: 2016-06-30