HU Chun-hua.An Algorithm of Population Forecast with Fractional Derivative and Variational Iteration Method[J].Journal of Chengdu University of Information Technology,2017,(01):78-81.[doi:10.16836/j.cnki.jcuit.2017.01.013]
基于分数阶导数和变分迭代法的人口预测算法
- Title:
- An Algorithm of Population Forecast with Fractional Derivative and Variational Iteration Method
- 文章编号:
- 2096-1618(2017)01-0078-04
- 关键词:
- 应用数学; Logistic模型; Caputo导数; 拉普拉斯变换; 变分迭代法
- Keywords:
- applied mathematics; Logistic model; Caputo's fractional deriva-tive; Laplace transform; variationaliterationmethod.
- 分类号:
- O29Document
- 文献标志码:
- A
- 摘要:
- 通过对经典的Logistic模型进行修正,构造一种基于分数阶导数的人口预测算法。主要应用分数阶导数对带有收获函数的Logistic模型进行修正,将经典的Logistic模型修正为分数阶微分模型,再用变分迭代法解修正后的Logistic模型,由此可得到分数阶微分模型的各阶近似解。通过预测美国人口比较了带有收获函数的Logistic模型和分数阶Logistic模型的优缺点。通过比较发现,分数阶Logistic模型能更好的吻合实际数据,提高预测的精度。
- Abstract:
- An algorithm of population forecast is established by Caputo's fractional derivative,the fractional derivative was extended to modify the Logistic model with harvesting functions,and the variational iteration method is applied to find approximate solutions of the model with Caputo's fractional derivative.As an example of America population forecast,by comparing the Logisticmodel with harvesting function and the model with fractional derivative,the results of this paper are much closer to the actual situation than that obtained by the classical Logistic model.
参考文献/References:
[1] Zhao D,Yuan S.A note on persistence and extinction of arandomized food limited logistic population model[J].Appl.Math.Comput.2014,246:599-607.
[2] Idlango M A,Shepherd J J,Gear J A.On the multiscale approximation of solutions to the slowly varying harvested logistic population model[J].Commun.Nonlinear Sci.2015,26:36-44.
[3] Kovalchik S A,Matteis S D,Landi MT,et al.A regression model for risk difference estimation in population-based case-control studies clarifies gender differences in lung cancer risk of smokers and never smokers[J].Bmc Med.Res.Methodol.2013,13:119-124.
[4] Kondo T,Sagawa M,Tanita T,et al.On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample[J].J.Appl.Stat.2010,37:25-40.
[5] Momani S,Qaralleh R.Numerical approximations and padeapproximants for a fractional population growth model[J].Appl.Math.Model.2007,31:1907-1914.
[6] Lutz W,Sanderson W,Scherbov S.The end of world population growth[J].Nature.2001,412:543-545.
[7] Santos J P C D,Cardoso L C,Monteiro E,et al.A Fractional-Order Epidemic Model for Bovine Babesiosis Disease andTick Populations[J].Abstr.Appl.Anal.2015,(1):1-10.
[8] He J H.Variational iteration method-a kind of non-linear analytical technique:some examples[J].Int.J.Nonlin.Mech.1999,34:699-708.
[9] Podlubny I.Fractional Differential Equations[M],Academic press San Diego,1999.
[10] Wu G C,Baleanu D.Variational iteration method for the Burgers'Flow with fractional derivatives-New Lagrange multipliers[J].Appl.Math.Model.2013,37:6183-6190.
[11] Wu G C,Baleanu D.Variational iteration method for fractional calculus-a universal approach by Laplace transform[J].Adv.Differ.Equ(NY).2013,2013:18.
[12] Safuan H M,Jovanoski Z,Towers I N,et al.Exact solution of a non-autonomous logistic population model[J].Ecol.Model.2013,251:99-102.
[13] https://en.wikipedia.org/wiki/United States Cen-sus[EB/OL].
相似文献/References:
[1]黄 飞,吴泽忠.基于Armijo搜索步长的几种共轭梯度法的分析对比[J].成都信息工程大学学报,2019,(02):209.[doi:10.16836/j.cnki.jcuit.2019.02.0017]
HUANG Fei,WU Zezhong.Analysis and Comparison of Several Conjugate Gradient
Methods based on Armijo Search Step Length[J].Journal of Chengdu University of Information Technology,2019,(01):209.[doi:10.16836/j.cnki.jcuit.2019.02.0017]
[2]卞广钱,周 磊.基于模糊贴近度的属性约简[J].成都信息工程大学学报,2017,(01):86.[doi:10.16836/j.cnki.jcuit.2017.01.015]
BIAN Guang-qian,ZHOU Lei.Attribute Reduction based on Fuzzy Closeness Degree[J].Journal of Chengdu University of Information Technology,2017,(01):86.[doi:10.16836/j.cnki.jcuit.2017.01.015]
[3]王 容,罗文力,廖群英.方程φ3(n)=n/d 的可解性[J].成都信息工程大学学报,2017,(01):95.[doi:10.16836/j.cnki.jcuit.2017.01.017]
WANG Rong,LUO Wen-li,LIAO Qun-ying.On the Solvability of the Equation φ3(n)=n/d[J].Journal of Chengdu University of Information Technology,2017,(01):95.[doi:10.16836/j.cnki.jcuit.2017.01.017]
[4]马 斌,吴泽忠.基于人工蜂群算法的供应链网络均衡问题研究[J].成都信息工程大学学报,2017,(03):336.[doi:10.16836/j.cnki.jcuit.2017.03.016]
MA Bin,WU Ze-zhong.Research on Supply Chain Network Equilibrium Model
based on Artificial Bee Colony Algorithm[J].Journal of Chengdu University of Information Technology,2017,(01):336.[doi:10.16836/j.cnki.jcuit.2017.03.016]
[5]丁云红,陈勇明.基于改进灰靶决策的女子七项全能排名模型[J].成都信息工程大学学报,2017,(06):678.[doi:10.16836/j.cnki.jcuit.2017.06.018]
DING Yun-hong,CHEN Yong-ming.Women's Heptathlon Ranking Model based
on Improved Gray Target Decision[J].Journal of Chengdu University of Information Technology,2017,(01):678.[doi:10.16836/j.cnki.jcuit.2017.06.018]
[6]熊 茜,吴泽忠.基于BFGS算法的广义Lagrange乘子法研究[J].成都信息工程大学学报,2020,35(02):221.[doi:10.16836/j.cnki.jcuit.2020.02.014]
XIONG Qian,WU Zezhong.Research on Generalized Lagrange Multiplier Method based on BFGS Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):221.[doi:10.16836/j.cnki.jcuit.2020.02.014]
[7]叶帮苹,冯汉中,刘志红,等.基于Logistic模型的四川山洪流域危险性评价[J].成都信息工程大学学报,2020,35(05):573.[doi:10.16836/j.cnki.jcuit.2020.05.016]
YE Bangping,FENG Hanzhong,LIU Zhihong,et al.Risk Assessment of Sichuan Mountain Flooding based on Logistic Model[J].Journal of Chengdu University of Information Technology,2020,35(01):573.[doi:10.16836/j.cnki.jcuit.2020.05.016]
[8]黄 艳,吴泽忠.基于Lévy飞行的一种改进鲸鱼算法[J].成都信息工程大学学报,2021,36(01):24.[doi:10.16836/j.cnki.jcuit.2021.01.005]
HUANG Yan,WU Zezhong.An Improved Whale Algorithm based on Lévy Flight[J].Journal of Chengdu University of Information Technology,2021,36(01):24.[doi:10.16836/j.cnki.jcuit.2021.01.005]
[9]刘珍珍,李旭东.基于有限Zak变换的零相关区序列集构造[J].成都信息工程大学学报,2024,39(03):382.[doi:10.16836/j.cnki.jcuit.2024.03.017]
LIU Zhenzhen,LI Xudong.Constructions of Zero Correlation Zone Sequence Sets based on Finite Zak Transform[J].Journal of Chengdu University of Information Technology,2024,39(01):382.[doi:10.16836/j.cnki.jcuit.2024.03.017]
备注/Memo
Received date:2016-04-26 Foundation item:Project Supported by the National Natural Science Foundation of China(11171046)