PDF下载 分享
[1]王 容,罗文力,廖群英.方程φ3(n)=n/d 的可解性[J].成都信息工程大学学报,2017,(01):95-101.[doi:10.16836/j.cnki.jcuit.2017.01.017]
 WANG Rong,LUO Wen-li,LIAO Qun-ying.On the Solvability of the Equation φ3(n)=n/d[J].Journal of Chengdu University of Information Technology,2017,(01):95-101.[doi:10.16836/j.cnki.jcuit.2017.01.017]
点击复制

方程φ3(n)=n/d 的可解性

参考文献/References:

[1] Kenneth Ireland,Michael Rosen.A classical introduction to Modern Number Theory[M].New York: Springer-Verlag,1990.
[2] Guy R,Unsolved problems in Number Theory[M].New York: Springer-Verlag,2004.
[3] 李铁牛,李红达.基于欧拉函数秘密分享的RSA私钥的理性分布计算[J].计算机工程与科学,2010,32(9):11-17.
[4] 谢健全,杨春华,RSA算法中几种可能泄密的参数选择[J].计算机工程,2006,32(16):118-119.
[5] 陈少真,密码学基础[M].北京:科学出版社,2008.
[6] 任伟,现代密码学[M].北京:北京邮电大学出版社,2011.
[7] Cai T X. A congruence involving the quotients of Euler and its applications(I)[J].Acta Aritmetica,2002,103(4):313-320.
[8] Cai T X,Fu X D,Zhou X. A congruence involving the quotients of Euler and its applications(II)[J].Acta Aritmetica,2007,130(3):203-214.
[9] Cai T X,Shen Z Y,Hu M J. On the Parity of the Generalized Euler Function[J].数学进展,2013,42(4):505-510.
[10] 丁煜.广义欧拉函数及其性质[D]。浙江:浙江大学,2008.
[11] Shen Z Y,Cai T X,Hu M J.On the Parity of the Generalized Euler Function(II)[J].数学进展,2016.
[12] 吕志宏.一个包含Euler函数的方程[J].西北大学学报,2006,36(1):17-20.
[13] 田呈亮,付静,白维祖.一个包含欧拉函数的方程[J].纯粹数学与应用数学,2010,26(1):96-98.
[14] 俞红玲,沈忠燕.与广义欧拉函数有关的方程[J].浙江外国语学院学报,2012,(3):96-98.
[15] 金明艳,沈忠燕.方程φ2(n)=2Ω(n)φ22(n))=2Ω(n)的可解性[J].浙江外国语学院学报,2013,(4):47-52.

相似文献/References:

[1]黄 飞,吴泽忠.基于Armijo搜索步长的几种共轭梯度法的分析对比[J].成都信息工程大学学报,2019,(02):209.[doi:10.16836/j.cnki.jcuit.2019.02.0017]
 HUANG Fei,WU Zezhong.Analysis and Comparison of Several Conjugate Gradient Methods based on Armijo Search Step Length[J].Journal of Chengdu University of Information Technology,2019,(01):209.[doi:10.16836/j.cnki.jcuit.2019.02.0017]
[2]胡春华.基于分数阶导数和变分迭代法的人口预测算法[J].成都信息工程大学学报,2017,(01):78.[doi:10.16836/j.cnki.jcuit.2017.01.013]
 HU Chun-hua.An Algorithm of Population Forecast with Fractional Derivative and Variational Iteration Method[J].Journal of Chengdu University of Information Technology,2017,(01):78.[doi:10.16836/j.cnki.jcuit.2017.01.013]
[3]卞广钱,周 磊.基于模糊贴近度的属性约简[J].成都信息工程大学学报,2017,(01):86.[doi:10.16836/j.cnki.jcuit.2017.01.015]
 BIAN Guang-qian,ZHOU Lei.Attribute Reduction based on Fuzzy Closeness Degree[J].Journal of Chengdu University of Information Technology,2017,(01):86.[doi:10.16836/j.cnki.jcuit.2017.01.015]
[4]马 斌,吴泽忠.基于人工蜂群算法的供应链网络均衡问题研究[J].成都信息工程大学学报,2017,(03):336.[doi:10.16836/j.cnki.jcuit.2017.03.016]
 MA Bin,WU Ze-zhong.Research on Supply Chain Network Equilibrium Model based on Artificial Bee Colony Algorithm[J].Journal of Chengdu University of Information Technology,2017,(01):336.[doi:10.16836/j.cnki.jcuit.2017.03.016]
[5]丁云红,陈勇明.基于改进灰靶决策的女子七项全能排名模型[J].成都信息工程大学学报,2017,(06):678.[doi:10.16836/j.cnki.jcuit.2017.06.018]
 DING Yun-hong,CHEN Yong-ming.Women's Heptathlon Ranking Model based on Improved Gray Target Decision[J].Journal of Chengdu University of Information Technology,2017,(01):678.[doi:10.16836/j.cnki.jcuit.2017.06.018]
[6]熊 茜,吴泽忠.基于BFGS算法的广义Lagrange乘子法研究[J].成都信息工程大学学报,2020,35(02):221.[doi:10.16836/j.cnki.jcuit.2020.02.014]
 XIONG Qian,WU Zezhong.Research on Generalized Lagrange Multiplier Method based on BFGS Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):221.[doi:10.16836/j.cnki.jcuit.2020.02.014]
[7]黄 艳,吴泽忠.基于Lévy飞行的一种改进鲸鱼算法[J].成都信息工程大学学报,2021,36(01):24.[doi:10.16836/j.cnki.jcuit.2021.01.005]
 HUANG Yan,WU Zezhong.An Improved Whale Algorithm based on Lévy Flight[J].Journal of Chengdu University of Information Technology,2021,36(01):24.[doi:10.16836/j.cnki.jcuit.2021.01.005]
[8]刘珍珍,李旭东.基于有限Zak变换的零相关区序列集构造[J].成都信息工程大学学报,2024,39(03):382.[doi:10.16836/j.cnki.jcuit.2024.03.017]
 LIU Zhenzhen,LI Xudong.Constructions of Zero Correlation Zone Sequence Sets based on Finite Zak Transform[J].Journal of Chengdu University of Information Technology,2024,39(01):382.[doi:10.16836/j.cnki.jcuit.2024.03.017]

备注/Memo

收稿日期:2016-05-26 基金项目:国家自然科学基金重大资助项目(11401408); 四川省教育厅重点资助项目(14ZA0034); 四川省科技厅应用基础研究计划资助项目(2016JY0134)

更新日期/Last Update: 2017-01-20