PDF下载 分享
[1]周建国,唐东明,彭 争,等.基于卷积神经网络的课堂表情分析软件研究与实现[J].成都信息工程大学学报,2017,(05):508-512.[doi:10.16836/j.cnki.jcuit.2017.05.008]
 ZHOU Jian-guo,TANG Dong-ming,PENG Zheng,et al.Students' Expression Analysis in the Classroom based on Gradient Boosting Decision Tree and Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2017,(05):508-512.[doi:10.16836/j.cnki.jcuit.2017.05.008]
点击复制

基于卷积神经网络的课堂表情分析软件研究与实现

参考文献/References:

[1] 张翠平,苏光大.人脸识别技术综述[J].中国图像图形学报:A辑,2000(11):885-894.
[2] 梁路宏,艾海舟,徐光祐,等.人脸检测研究综述[J].计算机学报,2002,25(5):449-458.
[3] 李华胜,杨桦,袁保宗.人脸识别系统中的特征提取[J].北方交通大学学报,2001,25(2):18-21.
[4] 王聃,贾云伟,林福严.人脸识别系统中的特征提取[J].微计算机信息,2005,21(07X):53-55.
[5] Bouvrie J.Notes on convolutional neural networks[J].2006.
[6] Friedman J H.Greedy function approximation:a gradient boosting machine[J].Annals of statistics,2001:1189-1232.
[7] Elith J,Leathwick J R,Hastie T.A working guide to boosted regression trees[J].Journal of Animal Ecology,2008,77(4):802-813.
[8] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C].Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778.
[9] Szegedy C,Liu W,Jia Y,et al.Going deeperwith convolutions[C].Proceedings of the IEEE conference on computer vision and pattern recognition.2015:1-9.
[10] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing systems.2012:1097-1105.
[11] 李航.统计学习方法[M].北京:清华大学出版社,2012.
[12] 苏耶亚塔·兰尼.用以提升教学效果的情感分析系统[J].计算科学评论,2017,6(1):34-41.
[13] 卢家楣.课堂教学的情感目标分类[J].心理科学,2006,29(6):1291-1295.
[14] Mishra,Brojo Kishore,Sahoo.Abhaya Kumar Source Evaluation of Faculty Performance in Education System Using Classification Technique in Opinion Mining Based on GPU Computational Intelligence in Data Mining.2016,(2):109-119.

相似文献/References:

[1]曹家华,吴 震,王 燚,等.基于CNN-BPR的S-Box功耗随机化侧信道攻击[J].成都信息工程大学学报,2022,37(01):16.[doi:10.16836/j.cnki.jcuit.2022.01.003]
 CAO Jiahua,WU Zhen,WANG Yi,et al.Side Channel Attack of S-box Power Randomization based on CNN-BPR[J].Journal of Chengdu University of Information Technology,2022,37(05):16.[doi:10.16836/j.cnki.jcuit.2022.01.003]
[2]李孝涌,陈科艺,李熙晨.卷积神经网络在ENSO预报中的应用[J].成都信息工程大学学报,2022,37(01):81.[doi:10.16836/j.cnki.jcuit.2022.01.014]
 LI Xiaoyong,CHEN Keyi,LI Xichen.Application of Convolutional Neural Network in ENSO Prediction[J].Journal of Chengdu University of Information Technology,2022,37(05):81.[doi:10.16836/j.cnki.jcuit.2022.01.014]

备注/Memo

收稿日期:2017-09-06 基金项目:国家自然科学基金资助项目(61003101-131-4)

更新日期/Last Update: 2017-04-30