跨语言无监督依存分析方法研究
- 文章编号:
- 2096-1618(2017)增-0021-04
- 摘要:
- 跨语种转移方法用于依赖关系已经取得了良好的效果。虽然这种方法使用的是依存树库的目标语言,但是,大多数方法都仍在使用大型平行语料库。据报告,并行数据是语言的稀缺资源,新方法不需要并行数据,内嵌语法的学习方法概括一个双语的语法语境词汇,并将这些结合成神经网络分析器。在给基线改进展示的同时,解析器是使用依存树库的数据集的。分析源的重要性是语言文字,并表明了是源语言的组合导致了基合金的改进。
参考文献/References:
[1] Wenbin Jiang,Qun Liu.Dependency Parsing and Pro-jection Based on Word-Pair Classification[C].Pro-ceedings of the 48th Annual Meeting of the Association for Computational Linguistics(ACL).Uppsala,Swe-den 2010:12-20.
[2] 宣云干. 基于潜在语义分析的社会化标注系统标签语义检索研究[D].南京: 南京大学,2011.
[3] 宋晓雷,王素格,李红霞,等.基于概率潜在语义分析的词汇情感倾向判别[J].中文信息学报,2011,25(2): 89-94.
[4] 单斌,李芳.基于 ELW 话题演化研究方法综述[J]. 中文信息学报,2010,24(6):43-49.
[5] Liu Dong C,Jorge Nocedal.On the limited memory BFGS method for large scale optimization[J].MathematicalProgramming,1989,45(3):503-528.
[6] Liu Lemao, Hailong Cao, Taro Watanabe,et al.Locally training the log-linear model for SMT[J]. In Proceedings of EMNLP/CoNLL,2012,402-411.
[7] Klein D,Manning C D.Corpus-based Induction of Syntactic Structure:Models of Dependency and Constituency[C].Barcelona,Spain,2004:478-485.
[8] Gulsen Eryigit,Kemal Oflazer.Statistical Dependency Parsing of Turkish[C].11th Conference of the Euro-pean Chapter of the Association for Computational Lin-guistics(EACL).Trento,Italy,2006:89-96.
[9] E.Charniak.A Maximum-entropy-inspired Parser [C].Proc.NAACL.Seattle,Washington,USA,2000:1396-1400.
[10] A.Ratnaparkhi.Learning to Parse Natural Language with Maximum Entropy Models[J].Machine Learn-ing,2002,34:151-175.
[11] Liu Lemao,Liang Huang.Search-aware tuning for machine translation[J].In Proceedings of EMNLP,2014:1942-1952.
[12] Liu,Lemao, Taro Watanabe, Eiichiro Sumita,et al.Additive neural networks for statistical machine translation[J].In Proceedings of ACL,2013:791-801.
[13] Liu,Lemao, Tiejun Zhao, Taro Watanabe,et al.Expected error minimization with ultraconservative update for SMT[J]. In Proceedings of COLING: Posters,2012:723-732.
[14] Liu,Lemao, Tiejun Zhao, Taro Watanabe,et al.Tuning SMT with a large number of features via online feature grouping[J].In Proceedings of IJCNLP,2013:279-285.
[15] Lo, Chi-kiu, Karteek Addanki, Markus Saers,et al.Improving machine translation by training against an automatic semantic frame based evaluation metric[J].In Proceedings of ACL:Short Papers,2013:375-381.
相似文献/References:
[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
备注/Memo
收稿日期:2016-07-04