PDF下载 分享
[1]郭 嘉,周钰谦,范飞廷.Joseph-Egri方程行波解的分岔[J].成都信息工程大学学报,2018,(01):103-106.[doi:10.16836/j.cnki.jcuit.2018.01.018]
 GUO Jia,ZHOU Yu-qian,FAN Fei-ting.Bifurcation of Traveling Wave Solutions of the Joseph-Egri Equation[J].Journal of Chengdu University of Information Technology,2018,(01):103-106.[doi:10.16836/j.cnki.jcuit.2018.01.018]
点击复制

Joseph-Egri方程行波解的分岔

参考文献/References:

[1] R I Joseph,R Egri.Another possible model equation for long waves in nonlinear dispersive systems[J].Physics Letters A,1977,61:429-432.
[2] N Taghizadeh,MMirzazadeh.Exact travelling wave solutions of Joseph-Egri(TRLW)equation by the extended homogeneous balance method[J].Applied Mathematics and computation,2012,4(1):96-104.
[3] 盖立涛,苏道毕力格,鲍春玲.推广的简单方程方法对两个非线性发展方程的应用[J].内蒙古工业大学学报,2015,33(1):1-4.
[4] 张维,陈自高.两类非线性发展方程的扩展G’/G法精确解[J].洛阳师范学院学报,2015,34(2):12-17.
[5] 那叶,代冬岩,熊柳亚,等.Josephp-Egri方程的单行波解[J].高师理科学刊,2016,36(8):18-24.
[6] Y Q Zhou,Q Liu.Kink waves and their evolution of the RLW-Burgers equation[J].Abstract and Applied Analysis,2012:222-232.
[7] J B Li,Y S Li.Bifurcations of travelling wave solutions for a two-component Camassa-Holm equation[J].Acta Mathematics Sinica,2008,8:1319-1330.
[8] J B Li.两类Boussinesq方程的行波解分支[J].中国科学,2008,38(11):1221-1234.
[9] Y Q Zhou,Q Liu,W N Zhang.Bifurcation of travelling wave solutions for the(2+1)-dimensional Broer-Kau-Kupershmidt equation[J].Applied Mathematics and Computation,2008,204:210-215.
[10] J B Li.Existence and breaking property of real loop-solutions of two nonlinear wave equations[J].Applied Mathematics and Mechanics,2009,5:537-547.
[11] A M Wazwaz.Gaussian solitary waves for the logarithmic-BBM and the logarithmic- TRLW equations[J].Mathematical Chemistry,2016,54:252-268.
[12] J B Li,G R Chen.Bifurcations of travelling wave solutions in a microstructured solid model[J].Bifurcation and Chaos,2013,2:1-18.
[13] B Katzengruber,M Kurpa,P Szmolyan.Bifurcation of travelling waves in extrinsic semiconducters[J].Physica D,2000,144:1-19.
[14] Y Q Zhou,Q Liu,W N Zhang.Bounded traveling waves of the Burgers-Huxley equation[J].Nonliear Analysis,2011,74:1047-1060.
[15] B He,et al.Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation[J].Nonlinear Analysis,2008,9:222-232.
[16] J Huang,et al.Existence of travelling wave solutions diffusive predator-prey model[J].Journal of Mathematics Biology,2003,46:132-152.
[17] Z R Liu,C X Yang.The application of bifurcation method to a higher-order KdV equation[J].Mathematics Analysis Applied,2002,275:1-12.
[18] 张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2000.
[19] 张伟年,杜正东,徐冰.常微分方程[M].北京:高等教育出版社,2014.
[20] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.

备注/Memo

收稿日期:2017-08-13基金项目:国家自然科学基金资助项目(11301043,11171046); 四川省教育厅重点资助项目(12ZA224)

更新日期/Last Update: 2018-01-15