GUO Jia,ZHOU Yu-qian,FAN Fei-ting.Bifurcation of Traveling Wave Solutions of the Joseph-Egri Equation[J].Journal of Chengdu University of Information Technology,2018,(01):103-106.[doi:10.16836/j.cnki.jcuit.2018.01.018]
Joseph-Egri方程行波解的分岔
- Title:
- Bifurcation of Traveling Wave Solutions of the Joseph-Egri Equation
- 文章编号:
- 2096-1618(2018)01-0103-04
- Keywords:
- applied mathematics; differential equation and their applications; Joseph-Egri equation; phase portraits; dynamical system; bifurcation; solitary wave solution
- 分类号:
- O241. 8
- 文献标志码:
- A
- 摘要:
- 自从Joseph-Egri方程被提出以来,人们用了多种方法去对获取它的精确行波解,但是依然有一些解可能被丢失,并且无法解释参数变化时解的演化。为了解决这些问题,利用动力系统分岔方法研究了Joseph-Egri方程的行波系统,获得了其不同拓扑结构的相图。这些相图清楚地展示了系统所有的有界轨道。对照这些有界轨道,通过计算复杂的椭圆积分,获得了系统的椭圆函数周期波解和孤波解。
- Abstract:
- Since the Joseph-egri eqution was proposed,many methods are used to obtain its exact traveling wave solutions.However,there are still many solutions that are lost,and they can’t explain how the solutions evolve when the parameters change.To solve these problems,the bifurcation method of dynamical system is employed to investigate the Joseph-Egri equation.We obtain different phase portraits of traveling wave system of it.According to these phase portraits,all bounded traveling waves are identified.Furthermore,by calculating some complicated elliptic integrals,we obtain the exact expressions of periodic wave solutions and solitary wave solutions.
参考文献/References:
[1] R I Joseph,R Egri.Another possible model equation for long waves in nonlinear dispersive systems[J].Physics Letters A,1977,61:429-432.
[2] N Taghizadeh,MMirzazadeh.Exact travelling wave solutions of Joseph-Egri(TRLW)equation by the extended homogeneous balance method[J].Applied Mathematics and computation,2012,4(1):96-104.
[3] 盖立涛,苏道毕力格,鲍春玲.推广的简单方程方法对两个非线性发展方程的应用[J].内蒙古工业大学学报,2015,33(1):1-4.
[4] 张维,陈自高.两类非线性发展方程的扩展G’/G法精确解[J].洛阳师范学院学报,2015,34(2):12-17.
[5] 那叶,代冬岩,熊柳亚,等.Josephp-Egri方程的单行波解[J].高师理科学刊,2016,36(8):18-24.
[6] Y Q Zhou,Q Liu.Kink waves and their evolution of the RLW-Burgers equation[J].Abstract and Applied Analysis,2012:222-232.
[7] J B Li,Y S Li.Bifurcations of travelling wave solutions for a two-component Camassa-Holm equation[J].Acta Mathematics Sinica,2008,8:1319-1330.
[8] J B Li.两类Boussinesq方程的行波解分支[J].中国科学,2008,38(11):1221-1234.
[9] Y Q Zhou,Q Liu,W N Zhang.Bifurcation of travelling wave solutions for the(2+1)-dimensional Broer-Kau-Kupershmidt equation[J].Applied Mathematics and Computation,2008,204:210-215.
[10] J B Li.Existence and breaking property of real loop-solutions of two nonlinear wave equations[J].Applied Mathematics and Mechanics,2009,5:537-547.
[11] A M Wazwaz.Gaussian solitary waves for the logarithmic-BBM and the logarithmic- TRLW equations[J].Mathematical Chemistry,2016,54:252-268.
[12] J B Li,G R Chen.Bifurcations of travelling wave solutions in a microstructured solid model[J].Bifurcation and Chaos,2013,2:1-18.
[13] B Katzengruber,M Kurpa,P Szmolyan.Bifurcation of travelling waves in extrinsic semiconducters[J].Physica D,2000,144:1-19.
[14] Y Q Zhou,Q Liu,W N Zhang.Bounded traveling waves of the Burgers-Huxley equation[J].Nonliear Analysis,2011,74:1047-1060.
[15] B He,et al.Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation[J].Nonlinear Analysis,2008,9:222-232.
[16] J Huang,et al.Existence of travelling wave solutions diffusive predator-prey model[J].Journal of Mathematics Biology,2003,46:132-152.
[17] Z R Liu,C X Yang.The application of bifurcation method to a higher-order KdV equation[J].Mathematics Analysis Applied,2002,275:1-12.
[18] 张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2000.
[19] 张伟年,杜正东,徐冰.常微分方程[M].北京:高等教育出版社,2014.
[20] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.
备注/Memo
收稿日期:2017-08-13基金项目:国家自然科学基金资助项目(11301043,11171046); 四川省教育厅重点资助项目(12ZA224)