PDF下载 分享
[1]陈胜娣,何冰倩,陈思宇,等.基于时空兴趣点的人体动作识别[J].成都信息工程大学学报,2018,(02):143-148.[doi:10.16836/j.cnki.jcuit.2018.02.007]
 CHEN Sheng-di,HE Bing-qian,CHEN Si-yu,et al.Human Action Recognition based on Spatio-Temporal Interest Point[J].Journal of Chengdu University of Information Technology,2018,(02):143-148.[doi:10.16836/j.cnki.jcuit.2018.02.007]
点击复制

基于时空兴趣点的人体动作识别

参考文献/References:

[1] 张博宇,刘家锋,唐降龙.一种基于时空兴趣点的人体动作识别方法[J].自动化技术与应用,2009,28(10):75-78.
[2] 王见,陈义,邓帅.基于改进SVM分类器的动作识别方法[J].重庆大学学报,2016,39(1):12-16.
[3] Watananbe T,Tanaka T.Vein authentication using color information and image matching with hight performance on natural light[C].Proceedings of International Joint Conference.Fukuoka:Fukuoka International Congress Center,2009:3625-3629.
[4] Yang M Y,Cao Y,McDonald J. Fusion of camera images and laser scans for wide baseline 3D scene alignment in urban environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66:52-61.
[5] An Hangxing,Meng Lingjun,Zhao Lin,et al. Long-distance transmission and high-speed and real-time storage technology of image data[J]. Video Engineering,2013,37(3):175-178.
[6] Cao Y,McDonald J. Improved feature extraction and matching in urban environments based on 3D view point normalization[J]. Computer Vision and Image Understanding,2012,116:86-101.
[7] W He. Recognition of human activities using a multclass relevance vector machine[J]. Optical Engineering SPIE,2012.
[8] Anoop Cherian,Piotr Koniusz,Stephen Gould. Higher-order Pooling of CNN Features via Kernel Linearization for Action Recognition[C]. IEEE Winter Conference on Applications of Computer Vision,2017:130-137.
[9] Laptev I. On Space-Time Interest Points[J]. International Journal of Computer Vision,2005,64(2/3):432-439.
[10] Park S,Aggarwal J K. A Hierachical Bayesian Network for Even Recognition of Human Actions and Interactions[J]. Multimedia Systems,2004,10(2):164-179.
[11] 丁松涛,曲仕茹. 基于改进时空兴趣点检测的人体行为识别算法[J]. 西北工业大学学报,2016,34(5):886-892.
[12] Guan T,Wang C. Registration based on scene recognition and natural features tracking techniques for widearea augmented reality systems[J].IEEE Transaction on Multimedia,2009,11(8):1393-1406.
[13] C Schuldt,I Laptev,B Caputo. Recognizing Human Actions: A Local SVM Approach[C]. Proceedings of the 17th Interenational Conference on Pattern Recognition.ICPR,2004.
[14] Sushideep Narayana. Action Recognition form video[EB/OL]. https://github.com/Sushirdeep/Action-Recognition-from-Videos/blob/master/ProjectReport/ActiionRecogntionReport_Sushirdeep.pdf.
[15] Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding[C]. Eighteenth Acm-Siam Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2007:1027-1035.
[16] KTH Database[EB/OL].http://www.nada.kth.se/cvap/actions/.
[17] 付朝霞,王黎明. 基于时空兴趣点的人体行为识别[J]. 微电子学与计算机,2013,30(8):28-35.
[18] Dufournaud Y,Schmid C,Horaud R. Matching Images with Different Resolutions[C]. The IEEE Conferences on Computer Vision and Pattern Recognition,Hilton Head Island,South Carolina,2000.
[19] Mokhtarian F,Suomela R. Curvature Scale Space Based Image Corner Detection[C]. EuropeaanSignal Processing Conference,Island of Rhodes,Greece,1998.
[20] Lindeberg T.Feature Detection with Automatic Scale Selection[J]. International Journal of Computer Vision,1998,30(2):79-116.
[21] Scovanner P, Ali S, Shah M. A 3-dimensional sift descriptor and its application to action recognition[C]. DBLP, 2007:357-360.
[22] Hartigan J A, Wong M A. A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1):100-108.
[23] 梁宇宏,张欣. 对遗传算法轮盘赌选择方式的改进[J]. Information Technology,2009,33(12):127-129.
[24] 夏桂梅,曾建潮. 一种基于轮盘赌选择遗传算法的随机微立群算法[J].计算机工程与科学,2007,29(6):51-54.
[25] 蔡军,邹鹏,沈弼龙,等.改进轮盘赌策略的反馈式模糊测试方法[J]. 四川大学学报,2016,48(2):133-137.
[26] 万士宁. 基于卷积神经网络的人脸识别研究与实现[D].成都:电子科技大学,2016.

相似文献/References:

[1]冯丽君,王 燮,王小东.基于FAHP的气象仿真服务逼真度评价研究[J].成都信息工程大学学报,2016,(02):168.
 FENG Li-jun,WANG Xie,WANG Xiao-dong.Evaluation of Meteorological Simulation Service Fidelity based on Fuzzy AHP[J].Journal of Chengdu University of Information Technology,2016,(02):168.
[2]吴东华,常 征,何 嘉.基于用户行为序列模式的性别分析与预测[J].成都信息工程大学学报,2016,(增刊1):7.

备注/Memo

收稿日期:2017-07-11基金项目:四川省教育厅重点科研资助项目(17ZA0064)

更新日期/Last Update: 2018-01-31