JIANG Wen-ting,LIN Shao-rui.A Malicious Download Fragment Detection Method for P2P Network based on Merkel Tree[J].Journal of Chengdu University of Information Technology,2018,(02):155-159.[doi:10.16836/j.cnki.jcuit.2018.02.009]
一种基于Merkel树的P2P网络虚假下载片段检测方法
- Title:
- A Malicious Download Fragment Detection Method for P2P Network based on Merkel Tree
- 文章编号:
- 2096-1618(2018)02-0155-05
- 关键词:
- 对等网络; 虚假节点; Merkel tree; 分布式证书
- Keywords:
- P2P network; malicious nodes; Merkel tree; distributed authentication
- 分类号:
- TP393
- 文献标志码:
- A
- 摘要:
- P2P 网络具有开放、匿名、自组织的特点,在为用户提供方便服务的同时,也为网络中的恶意节点提供虚假文件、为发动攻击行提供便利条件。当前的研究多采用信任模型构建的方法,通过以往的交易评估节点的可信程度为节点选择高质量服务、避免不安全交互提供选择依据,虽然可以在一定程度上提升网络安全性能,但计算过程依赖于反馈和推荐信息,对于大规模网络中反馈稀疏的情况评估性能较差,存在大量冗余信息,特别当恶意节点提供虚假反馈,发动共谋攻击、女巫攻击等针对信任模型的攻击时难于应对。为此,提出一种基于Merkel树的P2P网络虚假点检测方法,利用hash值检测文件片段的完整性。一旦检测到虚假节点之后,将其清除于网络,以增强P2P网络的安全性。
- Abstract:
- P2P network provides the conditions for the malicious nodes to provide fake documents and start its attack while provides a convenient and efficient service for users since it has the features of open,anonymous,self-organization.Current most researches use the method of trust model, through the credibility of the transaction evaluation node to node selection of high quality service, avoid unsafe interaction and provide basic data, although can improve the network security performance to a certain extent, but its calculation depends on the feedback and recommendation information for poor performance evaluation of sparse feedback in large-scale network, there are a lot of redundant information, especially when malicious nodes provide false feedback, to launch attacks against collusion attack, witch attacks are difficult to deal with the trust model. To solve the above problem, this paper proposes a solution that is detect and verification the malicious nodes based on Merkel tree. Once malicious node is detected, exclude the node out of the P2P networks in order to enhance the security of P2P network.
参考文献/References:
[1] 韩磊磊.P2P网络的恶意节点检测模型[J].计算机工程与设计,2001(2):484-485.
[2] 刘凤鸣.基于对等网络的带虚假反馈检测的声誉系统[D].湘潭:湘潭大学,2006(5).
[3] 宁晓莉,黄遵国.DHT网络中并发下载及安全防御机制的实现[J].计算机工程与科学,2008,30(1).
[4] 贺鹏程,王劲林,邓浩扛,等.P2P文件完整性校验延迟隐藏算法[J].计算机工程,2010,36(15):29-31.
[5] 胡玲.可信计算技术在P2P网络信任模型中的应用研究[D].南京:南京邮电大学, 2011.
[6] 冯景瑜,张玉清,陈深龙,等.P2P声誉系统中Good Rep攻击及其防御机制[J].计算机研究与发展,2011,48(8):1473-1480.
[7] 王勇,侯洁,白杨,等.基于反馈相关性的P2P网络信任模型[J].计算机科学,2013,40(2):103-107.
[8] 廖歹法,文朝阳.P2P网络中基于模糊评判的推荐信任模型[J].计算机工程与设计,2014,35(4):1183-1187.
[9] 任爽.基于FP-Outlier挖掘的P2P网络恶意节点检测模型[D].大连:大连理工大学,2015.
[10] 唐伯浩.P2P文件共享系统中信任管理机制研究[D].长春:吉林大学,2016.
备注/Memo
收稿日期:2018-02-27 基金项目:广东电网科技资助项目(036000KK52170002); 国家重点研发计划资助项目(2016YFB0901200)