GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(02):197-204.[doi:10.16836/j.cnki.jcuit.2018.02.015]
微波通信链路监测降水试验及可行性探究
- Title:
- Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes
- 文章编号:
- 2096-1618(2018)02-0197-08
- Keywords:
- atmospheric science; atmospheric physics and atmospheric environment; rainfall measurement; millimeter wave signal; microwave link; microwave rain decay.
- 分类号:
- P412.13
- 文献标志码:
- A
- 摘要:
- 随着世界第四代通信网络的广泛覆盖,第五代无线通信技术已经开始研究。毫米波无线电频段将是5G通信网络研究的重要环节。利用微波信号传播的衰减信息来监测、反演降水作为传统方式的补充,从而提高传统降雨观测的准确度。从国际电联建议书(ITU-R)模型出发, 基于微波雨衰特性和雨滴谱统计资料建立了微波链路降雨有效衰减的模型和视距微波链路的降雨反演模型。设计并搭建不同频段视距模拟微波链路测雨实验系统, 利用降雨反演模型反演了路径平均降雨强度,并与雨滴谱仪数据进行了同步对比。观测结果表明,不同频段微波在不同降雨强度下,微波信号衰减显著。当降雨强度在0~12 mm/时,25 GHz频段微波链路降雨反演雨强相关系数约为0.7,偏差2.0 mm; 当降雨强度在0~14 mm/h时,23 GHz频段微波降雨衰减明显,微波链路反演降雨强度相关系数在约为0.6,偏差3.0 mm; 当降雨强度在0~11 mm/h时,38 GHz频段微波反演雨强相关系数约为0.6,偏差4.0 mm; 当降雨强度大于50 mm/h,反演偏差较大。此外,试图分析实验中偏差的原因,为下一次实验探索奠定基础。通过比较微波链路和雨滴光谱仪测得的雨强值,揭示这种降雨监测方法的准确性和可靠性。
- Abstract:
- With the widespread coverage of the fourth generation of communication networks in the world, the fifth generation of wireless communication technologies has been studied. Millimeter wave radio frequency band will be an important part of the research of 5 G communication network. Using attenuation information transmitted by microwave signals to monitor and retrieve precipitation as a supplement to traditional methods, the accuracy of traditional rainfall observations can be improved. Based on the ITU-R model, a model of effective attenuation of microwave link rainfall and a model of rainfall inversion of line-of-sight microwave link are established based on the statistics of rain attenuation and rain drop. We design and set up the experimental system of line-of-sight analog microwave link rain measurement with different frequency bands. The mean rainfall intensity of the microwave path is retrieved by the rainfall inversion model, then it is compared with the data of the rain drop spectrometer. The results show that microwave signals attenuate significantly under different rainfall intensities in different frequency bands. When the rainfall intensity is between0-12 mm/h, the correlation coefficient of rainfall intensity in the 25 GHz frequency band is about 0.7 and the deviation is 2.0 mm. When the rainfall intensity is between 0-14 mm/h, the microwave rainfall decays obviously in the frequency range of 23 GHz. The correlation coefficient of the rainfall intensity of the link inversion is about 0.6 and the deviation is 3.0 mm. When the rainfall intensity is 0-11 mm/h, the correlation coefficient of the rain intensity at 38 GHz is about 0.6, and the deviation is 4.0 mm. When the rainfall intensity is larger than 50 mm/h, rainfall intensity deviation is lager. Furthermore, we have tried to analyze the cause of the deviation in the experiment, and it will lay the foundation for the next experiment. By comparing the rain intensity value measured by our microwave link and a raindrop spectrometer, the accuracy and reliability of this rainfall monitoring method will be revealed.
参考文献/References:
[1] 吕达仁,王普才,邱金桓,等.大气遥感与卫星气象学研究的进展与回顾[J].大气科学,2003,27(4):552-566.
[2] 梁海河,徐宝祥,刘黎平,等.偏振微波雷达探测大气研究进展及几个问题的考虑[J].地球科学进展,2005,20(5):541-548.
[3] 高太长,刘西川,刘磊,等.降水测量仪器现状及展望[C].度气象水文海洋仪器学术交流会.2012.
[4] 印敏,高太长,刘西川,等.微波链路测量降水研究综述[J].气象,2015,41(12):1545-1553.
[5] 陈洪滨,李兆明,段树,等.天气雷达网络的进展[J].遥感技术与应用,2012,27(4):487-495.
[6] Sorooshian S,Aghakouchak A,Arkin P,et al.Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales[J].Bulletin of the American Meteorological Society,2011,92(10):1353-1357.
[7] Sorooshian S,Aghakouchak A,Arkin P,et al.Advancing the Remote Sensing of Precipitation[J].Bulletin of the American Meteorological Society,2011,92(10):1271-1272.
[8] 姜世泰,高太长,刘西川,等.基于微波链路的降雨场反演方法研究[J].物理学报,2013,62(15):154303-8.
[9] Schönhuber M,Lammer G,Randeu W L,et al.Precipitation:Advances in Measurement,Estimation and Prediction[M].Springer Berlin Heidelberg,2008.
[10] Liu Xi xuan,Gao Tai chang,Qin Jian,et al.Effect of rainfall on microwave transmission characteristics[J].Acta Physica Sinica,2010,59(3):2156-2162.
[11] Messer H,Zinevich A,Alpert P.Environmental monitoring by wireless[J].Science,2006,312(5774):713-713.
[12] 张称意,陈德亮,董文杰.用手机网络信号监测天气状况[J].生态学报,2006,26(9):3156-3157.
[13] 刘西川,高太长,秦健,等.降雨对微波传输特性的影响分析[J].物理学报,2010,59(3):2156-2162.
[14] 刘西川,刘磊,高太长,等.不同类型降水对毫米波传播特性的影响研究[J].红外与毫米波学报,2013,32(4).
[15] 高太长,姜世泰,刘西川,等.微波链路测量降水新方法及关键技术分析[C].中国气象学会年会.2013.
[16] Rincon RF,Lang R H.Microwave link dual-wavelength measurements of path-average attenuation for the estimation of drop size distributions and rainfall[J].IEEE Transactions on Geoscience & Remote Sensing,2002,40(4):760-770.
[17] Minda H.High Temporal Resolution Path-Average Rain Gauge with 50 GHz Band Microwave[J].Journal of Atmospheric & Oceanic Technology,2005,22(22):165-179.
[18] Zinevich A,Alpert P,Messer H.Estimation of rainfall fields using commercial microwave communication networks of variable density[J].Advances in Water Resources,2008,31(11):1470-1480.
[19] Zinevich A,Messer H,Alpert P.Frontal Rainfall Observation by a Commercial Microwave Communication Network[J].Journal of Applied Meteorology & Climatology,2009,48(7):1317-1334.
[20] Goldshtein O,Messer H,Zinevich A.Rain Rate Estimation Using Measurements From Commercial Telecommunications Links[J]. IEEE Transactions on Signal Processing,2009,57(4):1616-1625.
[21] Overeem A,Leijnse H,Uijlenhoet R.Measuring urban rainfall using microwave links from commercial cellular communication networks[J].Water Resources Research,2011,47(12).
[22] Overeem A,Leijnse H,Uijlenhoet R.Country-wide rainfall maps from cellular communication networks[J].Proceedings of the National Academy of Sciences,2013,110(8):2741-5.
[23] Overeem A,Leijnse H,Uijlenhoet R.Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network[J].Atmospheric Measurement Techniques Discussions,2015,8(8):8191-8230.
[24] Bianchi B,Rieckermann J,Berne A.Detection of faulty rain gauges using telecommunication microwave links International Conference on Urban Drainage,Porto Alegre/Brazil,2011.11-16.
[25] David N,Alpert P,Messer H.Technical Note:Novel method for water vapor monitoring using wireless communication networks measurements[J].Atmospheric Chemistry & Physics,2008,9(7):2413-2418.
[26] David N,Alpert P,Messer H.Humidity Measurements using Commercial Microwave Links[M].Advanced Trends in Wireless Communications.2011.
[27] 蔡跃明.现代移动通信[M].北京:机械工业出版社,2013.
[28] Rappaport T S,Heath R W,Daniels R C,et al.Millimeter Wave Wireless Communications[J].2015.
[29] 莫利斯田斌,帖翊,任光亮.无线通信:Wireless communications[M].北京:电子工业出版社,2015.
[30] Specific Attenuation Model for Rain for Use in Prediction Methods[J].ITU-R Recommendations.
[31] Propagation data and prediction methods required for the design of earth-space telecommunication systems[J].ITU-R Recommendations.1996.
[32] Draft revision to Recommendation.ITU-R.ITU-R study group 3 meeting.1999.
[33] An improved prediction method of rain attenuation for terrestrial light-of sight path[J].ITU-R.2005.
[34] Schleiss M,Berne A.Identification of Dry and Rainy Periods Using Telecommunication Microwave Links[J].IEEE Geoscience & Remote Sensing Letters,2010,7(3):611-615.
[35] 陈宝君,宫福久.三类降水云雨滴谱分布模式[J].气象学报,1998,56(4):506-512.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(02):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(02):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[4]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(02):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[5]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(02):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[6]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(02):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[7]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(02):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[8]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(02):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[9]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(02):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
[10]雷坤江,假 拉,肖天贵.利用FY2E 卫星降水资料对西藏地区
降水日变化特征分析[J].成都信息工程大学学报,2016,(01):86.
LEI Kun-jiang,JIA La,XIAO Tian-gui.The Characteristics of Diurnal Variations of Precipitation
Analysis in Tibet Accord to FY2E Precipitation[J].Journal of Chengdu University of Information Technology,2016,(02):86.
备注/Memo
收稿日期:2017-12-26基金项目:国家自然科学基金资助项目(41605122)