WANG Zhou,YANG Ming-xin,WANG Xin-yuan.Location Algorithm based on Multi-sensor Fusion forMulti-rotor Aerial Vehiclesto Flight Near the Ground[J].Journal of Chengdu University of Information Technology,2018,(03):261-267.[doi:10.16836/j.cnki.jcuit.2018.03.007]
基于多传感器融合的多旋翼无人机近地面定位算法
- Title:
- Location Algorithm based on Multi-sensor Fusion forMulti-rotor Aerial Vehiclesto Flight Near the Ground
- 文章编号:
- 2096-1618(2018)03-0261-07
- Keywords:
- localization algorithm; Multi-sensor fusion; Kalman filter; processingerror data; Chi-square test
- 分类号:
- TP212.9
- 文献标志码:
- A
- 摘要:
- 为了使多旋翼无人机在近地面,不依赖GPS信号情况下仍然具有准确的定位能力,提出一种基于惯性导航,融合光流传感器、超声波传感器、气压计数据的多传感器融合定位算法。通过分析各传感器与无人机运动位置的数学关系,建立基于卡尔曼滤波的多传感器数据融合方程,再对传感器数据做预防失效处理和卡方检验,最终融合、计算出多旋翼无人机在近地面飞行时的位置。实验证明:所提定位算法能够实时地、较为准确地计算出多旋翼无人机在近地面飞行的位置。
- Abstract:
- In order to make the Multi-rotor still has the ability of location in the Near-ground environment without GPS, we proposed a Multi-sensor Fusion Localization Algorithm based on inertial navigation, optical flow sensor, ultrasonic sensor and barometer sensor. Through analysingthe mathematical relationship between the position of Multi-rotor’s motion and these sensors,establishing the Kalman filter equation based on Multi-sensor data Fusion.Then processing errordata and Chi-square test for sensors. Finally calculating the position for Multi-rotor to flight Near the Ground. The experiment shows that the proposed Localization Algorithm can calculate the position in real time and accurately for the Multi-rotor unmanned aerial vehicle to flight Near the ground.
参考文献/References:
[1] 焦竹青,熊伟丽,张林,等.基于信任度的多传感器数据融合及其应用[J].东南大学学报(自然科学版),2008(s1):253-257.
[2] Moon H S,Yong B K,Beattie R J.Multi sensor data fusion for improving performance and reliability of fully automatic welding system[J].International Journal of Advanced Manufacturing Technology,2006,28(3/4):286-293.
[3] Wang J H,Gao Y.Multi-sensor data fusion for land vehicle attitude estimation using a fuzzy expert system[J].Data science Journal,2006,4(1):127-139.
[4] Munguia R,Grau A.A Practical Method for Implementing an Attitude and Heading Reference System[J].International Journal of Advanced Robotic Systems,2014,11(1):1.
[5] 张荣辉,贾宏光,陈涛,等.基于四元数法的捷联式惯性导航系统的姿态解算[J].光学精密工程,2008,16(10):1963-1970.
[6] Mahony R,Kumar V,Corke P.Multirotor Aerial Vehicles:Modeling, Estimation and Control of Quadrotor[J].IEEE Robotics & Automation Magazine,2012,19(3):20-32.
[7] Honegger D,Meier L,Tanskanen P,et al.An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications[C].IEEE International Conference on Robotics and Automation.IEEE,2013:1736-1741.
[8] 郝振海.组合传感器仪表关键技术研究[D].南京:南京航空航天大学,2010.
[9] Welch G,Bishop G.An Introduction to the Kalman Filter[J].University of North Carolina at Chapel Hill,2013,8(7):127-132.
[10] Dekker K,Verwer J G.Stability of Runge-Kutta methods for stiff nonlinear differential equations[J].Mathematics of Computation,1984,47.
[11] Faragher R.Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation [Lecture Notes][J]. IEEE Signal Processing Magazine,2012,29(5):128-132.
[12] 周俊,张鹏.基于灰色预测的农业机器人GPS导航系统硬故障隔离[J].农业机械学报,2010,41(12):165-168.
[13] Meier L,Tanskanen P,Heng L,et al.PIXHAWK:A micro aerial vehicle design for autonomous flight using onboard computer vision[J].Autonomous Robots,2012,33(1/2):21-39.
备注/Memo
收稿日期:2018-03-21