HAN Jing-hong,WANG Hai-jiang,RAN Yuan-bo,et al.PolSAR Image Classification based on SVM and Superpixel[J].Journal of Chengdu University of Information Technology,2018,(04):370-374.[doi:10.16836/j.cnki.jcuit.2018.04.004]
基于支撑向量机和超像素的极化SAR图像分类
- Title:
- PolSAR Image Classification based on SVM and Superpixel
- 文章编号:
- 2096-1618(2018)04-0370-05
- Keywords:
- polarimetric SAR; dimension reduction; SVM; superpixel; classification
- 分类号:
- TN957.52
- 文献标志码:
- A
- 摘要:
- 针对极化SAR图像的分类方法多集中在像素级,这些方法不仅运算量大,而且分类效果较差,提出一种利用支撑向量机和超像素分割相结合的方法对极化合成孔径雷达(PolSAR)系统图像分类。首先,利用SLIC算法对Pauli分解后的极化SAR图像进行超像素分割。然后,利用预处理后的数据得到高维的极化特征空间,并利用监督局部线性嵌入(SLLE)算法对高维极化特征进行降维,减少特征空间的冗余信息,提取主要信息。最后,以超像素为处理单元,获得每个超像素内的特征,利用支撑向量机(SVM)对超像素块进行分类,获得初始类别分类结果,之后,使用Wishart分类器再次分类。实验结果表明所提的方法较基于像素点分类的方法能够得到更好的分类效果。
- Abstract:
- The classification methods for PolSAR images are mostly concentrated at the pixel level. These methods not only have a large amount of computation, but also have a poor classification effect. A method based on SVM and superpixel segmentation for polarimetric SAR image classification is proposed. Firstly, the SLIC algorithm is used to segment the polarimetric SAR image after Pauli decomposition. Then, the preprocessed coherence matrix is used to obtain the high dimension polarimetric feature space, and the Supervised Local Linear Embedding(SLLE)algorithm is used to reduce the dimension. Finally, superpixel blocks are classified by SVM, and the classification result after being classified by SVM algorithm is classified by the Wishart classifier again.
参考文献/References:
[1] 付姣,张永红,刘晓龙,等.利用Yamaguchi分解保持地物散射特性的极化SAR分类[J].测绘科学,2014,39(3):81-84.
[2] Lee J S,Pottier E.Polarimetric Radar Imaging:From Basics to Applications[J].Francis Group Boca Raton Isbn,2009.
[3] Wu Y,Ji K,Yu W,et al.Region-Based Classification of Polarimetric SAR Images Using Wishart MRF[J].IEEE Geoscience & Remote Sensing Letters,2008,5(4):668-672.
[4] Van Zyl J J.Unsupervised classification of scattering behavior using radar polarimetry data[J].IEEE Transactions on Geoscience & Remote Sensing,1989,27(1):36-45.
[5] Cloude S R,Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[J].IEEE Transactions on Geoscience & Remote Sensing,1997,35(1):68-78.
[6] Cloude S R,Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geoscience & Remote Sensing,1996,34(2):498-518.
[7] Krogager E.New decomposition of the radar target scattering matrix[J].Electronics Letters,1990,26(18):1525-1527.
[8] 任俊英,苏彩霞,曹永锋.基于中间层特征的全极化SAR监督地物分类[J].遥感技术与应用,2014,29(2):330-337.
[9] Pottier E,Saillard J.On radar polarization target decomposition theorems with application to target classification,by using neural network method[C].Antennas and Propagation,1991.Icap 91.Seventh International Conference on.IET,2002,1:205-268.
[10] Chen K S,Huang W P,Tsay D H,et al.Classification Of Multifrequency Polarimetric Sar Imagery Using A Dynamic Learning Neural Network[J].Geoscience & Remote Sensing IEEE Transactions on,1996,34(3):814-820.
[11] 许斌.基于复Wishart分布的极化SAR图像无监督分类[J].信息技术,2016,40(11).
[12] Doulgeris A P,Anfinsen S N,Eltoft T.Classification With a Non-Gaussian Model for PolSAR Data[J].IEEE Transactions on Geoscience & Remote Sensing,2008,46(10):2999-3009.
[13] Lin L Q,Song H,Huang P P,et al.Unsupervised classification of PolSAR data using large scale spectral clustering[C].Geoscience and Remote Sensing Symposium.IEEE,2014:2814-2817.
[14] Chen C T,Chen K S,Lee J S.The use of fully polarimetric information for the fuzzy neural classification of SAR images[J].IEEE Transactions on Geoscience & Remote Sensing,2003,41(9):2089-2100.
[15] Khan K U,Yang J.Novel Features for Polarimetric SAR Image Classification by Neural Network[C].International Conference on Neural Networks and Brain,2005.Icnn&b.IEEE,2005:165-170.
[16] 李平,徐新,董浩,等.利用可分性指数的极化SAR图像特征选择与多层SVM分类[J].计算机应用,2018,38(1):132-136.
[17] Lee J S,Wen J H,Ainsworth T L,et al.Improved Sigma Filter for Speckle Filtering of SAR Imagery[J].IEEE Transactions on Geoscience & Remote Sensing,2009,47(1):202-213.
[18] Krogager E.New decomposition of the radar target scattering matrix[J].Electronics Letters,1990,26(18):1525-1527.
备注/Memo
收稿日期:2018-05-02基金项目:四川省科技厅应用基础资助项目(2016JY0106); 四川省教育厅重点资助项目(16ZA0209)