ZHOU Ke,WANG Wei,REN Xiao-yue.Characteristics of Low-frequency of Continuous Abnormal Precipitation in theMiddle and Lower Reaches of the Yangtze River in Summer 2010[J].Journal of Chengdu University of Information Technology,2018,(04):448-455.[doi:10.16836/j.cnki.jcuit.2018.04.015]
2010年夏季长江中下游持续性异常降水低频特征分析
- Title:
- Characteristics of Low-frequency of Continuous Abnormal Precipitation in theMiddle and Lower Reaches of the Yangtze River in Summer 2010
- 文章编号:
- 2096-1618(2018)04-0448-08
- Keywords:
- meteorology; low-frequency oscillationthe; middle and lower reach of the Yangtze River; continuous abnormal rain
- 分类号:
- P458.1+21
- 文献标志码:
- A
- 摘要:
- 针对2010年7月一次长江中下游持续性异常降水过程,利用NCEP/NCAR FNL(Final)提供的水平分辨率为1.0°*1.0°的逐日4次再分析资料和中国气象局提供的地面气象观测站逐日降水资料,采用Lanczos带通滤波、离散功率谱分析、相关分析等方法研究了其时空特征、低频系统的环流特征和传播特征。结果表明:长江中下游异常降水过程持续时间长达11 d,2010年7月5-15日,降水带位于整个长江区域,中心位于江西、湖北和安徽省的交界处,降水量高达 573 mm。造成此次持续性异常降水的主要原因是冷暖空气交汇,降水发生时,新疆附近中高层存在一低频反气旋加强中心,该低频反气旋北部的西北气流与位于中国东北地区附近气旋的南侧气流汇合,为此次过程提供了西北冷空气,西太平洋东南暖湿气流为持续性降水的产生维持提供了充足的水汽条件。同时分析了2010年夏季长江中下游地区经向风和纬向风的低频振荡传播特征,在此次持续性异常降水过程中低频特征显著,尤其是纬向风场,从7月初到7月中旬存在显著的一次自东向西的低频输送,低频信号中心出现在7月10日左右位于长江中下游附近。说明气象要素的低频振荡及传播在这次长江中下游持续性异常降水过程中有着重要作用。
- Abstract:
- Based on a continuous abnormal precipitation process in the middle and lower reaches of the Yangtze River in July 2010, four daily reanalysis data provided by NCEP/NCAR FNL(Final)with horizontal resolution of 1.0°×1.0° and ground meteorological observations provided by China Meteorological Administration Station daily precipitation data are used. Lanczos band-pass filtering, discrete power spectrum analysis, correlation analysis and other methods are adopted to study its spatial and temporal characteristics, low-frequency system circulation characteristics and propagation characteristics. The results show that the abnormal precipitation process in the middle and lower reaches of the Yangtze River lasted for 11 days, starting from July 5 and ending on the 15th. The precipitation belt is located in the entire Yangtze River region, and the center is located at the junction of Jiangxi, Hubei, and Anhui Provinces, up to 573 mm. The main cause of this continuous abnormal precipitation is the convergence of cold and warm air. At the time of precipitation, there is a low-frequency anticyclone strengthening center in the middle and high-level near Xinjiang. The northwest airstream is in the north of the low-frequency anticyclone and the south side of the cyclone is near the northeastern China region. The convergence of the air flow provided the northwestern cold air for this process. Warm and humid southeastern air flow in the western Pacific provided sufficient water vapor conditions for the maintenance of continuous precipitation. At the same time, the characteristics of low-frequency oscillations of meridional and zonal winds in the middle and lower reaches of the Yangtze River in summer 2010 were analyzed. The characteristics of low-frequency oscillations during the continuous anomalous precipitation process were significant, especially the zonal wind field, from early July to mid-July. There is a significant low-frequency transmission from east to west, and the low-frequency signal center appears around July 10 near the middle and lower reaches of the Yangtze River. It shows that the low-frequency oscillations and propagation of meteorological elements play an important role in the continuous abnormal precipitation in the middle and lower reaches of the Yangtze River.
参考文献/References:
[1] 叶笃正,黄荣辉.长江、黄河流域旱涝规律和成因研究[M].济南:山东科学技术出版社,1996:387.
[2] 杨静,钱永甫.121a梅雨序列及其时变特征分析[J].气象科学,2009,29(3):285-290.
[3] 曹鑫,任雪娟,孙旭光.江淮流域袭击持续性强降水的低频特征分析[J].气象科学,2013,33(4):362-370.
[4] 张玉洁,刘寿东,任宏利,等.中国南方夏季低频雨型特征及其年代际变化研究[J].气象学报,2014,72(6):1205-1217.
[5] 甘晶晶.汤燕冰.江淮流域持续性暴雨过程的中期信号初析[J].浙江大学学报(理学版),2009,36(4):477-486.
[6] 缪启龙,吴燕.长江中下游6-7月降水异常与500 hPa大气环流的关系[J].气象与减灾研究,2009,32(4):18-24.
[7] Madden R D,Julian P.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].Atmos Sci,1971,28(5):702-708.
[8] Madden R D,Julian P.Description of globe-scale circulation cells in the tropics with a 40-50 day period[J].J Atmos Sci,1972,29(6):1109-1123.
[9] Yang Hui,Li Chongyin.The Relation between Atomospheric Instraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin[J].Advances in Atmospheric Sciences,2003,20(4):540-553.
[10] Yang J,B Wang,Q Bao.Biweekly and 21-30 Day Variations of the Subtropical Summer Monsoon Rainfall over the Lower Reach of the Yangtze River Basin[J].Climate,2010,23,1146-1159.
[11] Congwen Z,Wen W.Analysis of the characteristics of 30-60 day low-frequency oscillation over Asia during 1998 SCSMEX[J].Advances in Atmospheric Sciences:2001,18(4):623-638.
[12] 李崇银,杨辉.大气季节内振荡的活动与江淮流域夏季旱涝[J].湖泊科学,2003,15(s1):16-21.
[13] 李桂龙,李崇银.江淮流域夏季旱涝与不同时间尺度大气扰动的关系[J].大气科学,1999,23(1):39-50.
[14] Yang Hui,Li Chongyin.The Relation between Atomospheric Instraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin[J].Advances in Atmospheric Sciences,2003,20(4):540-553.
[15] 黄静,朱乾根,李爱武.与长江流域旱涝相联系的全球低频环流场[J].热带气象学报,1997(2):146-157.
[16] 张秀丽,郭品文,何金海.1991年夏季长江中下游降水和风场的低频振荡特征分析[J].南京气象学院学报,2002,25(3):388-394.
相似文献/References:
[1]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(04):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[2]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(04):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[3]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(04):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[4]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(04):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[5]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(04):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[6]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(04):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[7]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(04):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[8]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(04):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[9]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(04):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
[10]李筱杨,朱克云,程 溢,等.吉林玉米生长期土壤水分规律分析[J].成都信息工程大学学报,2018,(03):344.[doi:10.16836/j.cnki.jcuit.2018.03.018]
LI Xiao-yang,ZHU Ke-yun,CHENG Yi,et al.Analysis of Soil Moisture Regularity in Jilin Maize Growing Period[J].Journal of Chengdu University of Information Technology,2018,(04):344.[doi:10.16836/j.cnki.jcuit.2018.03.018]
[11]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(04):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[12]王祉苏,巩远发.2016年夏季中国降水的低频振荡特征及其与热带海洋大气低频振荡的联系[J].成都信息工程大学学报,2020,35(04):439.[doi:10.16836/j.cnki.jcuit.2020.04.013]
WANG Zhisu,GONG Yuanfa.The Low-frequency Oscillation Characteristics of Precipitation in China and its Relation to the Low-frequency Oscillation of Tropical Ocean in Summer 2016[J].Journal of Chengdu University of Information Technology,2020,35(04):439.[doi:10.16836/j.cnki.jcuit.2020.04.013]
备注/Memo
收稿日期:2018-03-10基金项目:国家自然科学基金资助项目(41005034); 公益性行业(气象)科研专项资助项目(GYHY201506001)