XUE Zhi-hang,DENG Chuang,SUN Yi.Temporal and Spatial Distribution Characteristics ofOzone over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2018,(04):464-469.[doi:10.16836/j.cnki.jcuit.2018.04.017]
青藏高原上空臭氧时空分布特征
- Title:
- Temporal and Spatial Distribution Characteristics ofOzone over the Tibetan Plateau
- 文章编号:
- 2096-1618(2018)04-0464-06
- Keywords:
- The Tibetan Plateau; UTLS; ozone; temporal and spatial distribution
- 分类号:
- P421.33
- 文献标志码:
- A
- 摘要:
- 平流层臭氧对全球的气候变化具有十分重要的影响。为了研究青藏高原地区上对流层下平流层(UTLS)区域臭氧的时空分布特征,利用ECMWF臭氧再分析资料,通过经验正交函数(EOF)和回归分析的方法,分析了1979-2015年青藏高原UTLS区域臭氧在时间和空间上的变化特征。结果表明:整体上青藏高原UTLS区域的臭氧含量呈现南部低、北部高的空间分布特征,但南亚高压的顺时针环流也会将高纬度高浓度臭氧输送到低纬地区; 青藏高原UTLS区域的臭氧含量在冬、春较高,夏、秋偏低,其中200 hPa和150 hPa上的臭氧变化基本一致。200 hPa上的臭氧在高原33 °N以南区域臭氧呈显著减少趋势,100 hPa上整个高原地区的臭氧都呈现出显著性减少趋势; 青藏高原地区夏季100 hPa上的臭氧变化存在两个主要的模态,第一和第二模态的解释方差分别为59%和14.8%,第一主模态在空间上表现为全区一致性,第二主模态则表现出南-北反向特征。
- Abstract:
- Stratospheric ozone has a very important impact on global climate change. In order to study the temporal and spatial distribution characteristics of ozone in the upper-troposphere and lower-stratosphere(UTLS)region over the Tibetan Plateau. the temporal and spatial distribution characteristics of ozone over the Tibetan Plateau from 1979 to 2015 was analyzed with empirical orthogonal functions(EOF)and regression analysis using ECMWF ozone reanalysis data. The results show that:The ozone content in the UTLS region over the Tibetan Plateau is lower in the South and higher in the North. However, the clockwise circulation of the South Asia High also transports high-concentration ozone from high-latitude to low-latitude regions.The ozone content in the UTLS region is higher in winter and spring, and lower in summer and autumn, and the ozone changes at 200 hPa and 150 hPa are basically the same. The ozone at 200 hPa shows a significant decrease in the area south of 33°N in the plateau. Ozone at 100 hPa also shows a significant decrease.There are two main modes of ozone change in summer at 100 hPa over the Tibetan Plateau. The explanatory variances of the first and second modes are 59% and 14.8%, respectively. The first principal mode is spatially consistency throughout the plateau, and the second principal mode showed a south-north inverse features.
参考文献/References:
[1] Andrews D G,Holton J R,Leovy C B.Middle atmosphere dynamics[M].San Diego:Academic,1987.
[2] 施春华,陈月娟,郑彬,等.平流层臭氧季节变化的动力和光化学作用之比较[J].大气科学,2010,34(2):399-406.
[3] Reiter E R,Gao D Y.Heating of the Tibet Plateau and movements of the South Asian high during spring [J].Mon Wea Rev,1982,110(11):1694-1711.
[4] Hingane L S.Ozone valley in the subtropics[J].Journal of the atmospheric sciences,1990,47(14):1814-1816.
[5] 周秀骥,史久恩.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报,1995,40(15):1396-1398.
[6] Zou H.Seasonal variation and trends of TOMS ozone over Tibet[J].Geophys Res Lett,1996,23(9):1029-1032.
[7] Bian J,Wang G,Chen H,et al.Ozone mini-hole occurring over the Tibetan Plateau in December 2003[J].Chin Sci Bull,2006,51(7):885-888.
[8] Guo D,Wang P,Zhou X,et al.Dynamic effects of the South Asian High on the ozone valley over the Tibetan Plateau[J].Acta Meteorol Sin,2012,26(2):216-228.
[9] Guo D,Su Y,Shi C,et al.Double core of ozone valley over the Tibetan Plateau and its possible mechanisms[J].J Atmos Sol-Terrl Phy,2015,130/131:127-131.
[10] 郭栋,徐建军,苏昱丞,等.青藏高原和北美夏季臭氧谷垂直结构和形成机制的比较[J].大气科学学报,2017,40(3):412-417.
[11] 李书博,吴统文,张洁,等.BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J],高原气象,2015,34(6):1601-1615.
[12] 张芳,吴统文,张洁,等.BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象,2016,35(1):158-171.
[13] 万凌峰,郭栋,刘仁强,等.WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估[J].高原气象,2017,36(1):57-66.
[14] 苏昱丞,郭栋,郭胜利,等.未来百年夏季青藏高原臭氧变化趋势及可能机制[J].大气科学学报,2016,39(3):309-317.
[15] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
[16] 郭世昌,戴敏,杨沛琼,等.北半球Hadley环流与臭氧气候演变规律及其相互关系[J].云南大学学报(自然科学版),2012,34(2):169-176.
[17] Bian J,Yan R,Chen H,et al.Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations[J]. Advance in Atmospheric Sciences,2011,28(6):1318-1325.
相似文献/References:
[1]吴 钩,白爱娟.青藏高原季风环流情况与中亚季风降水特征分析[J].成都信息工程大学学报,2016,(01):76.
WU Gou,BAI Ai-juan.Analysis on the Characteristics of Tibetan Plateau's
Monsoon Circulation and Central Asia's Rainfall[J].Journal of Chengdu University of Information Technology,2016,(04):76.
[2]梁嘉颖,陈权亮.青藏高原多种对流层顶的时空分布特征对比分析[J].成都信息工程大学学报,2020,35(01):69.[doi:10.16836/j.cnki.jcuit.2020.01.010]
LIANG Jiaying,CHEN Quanliang.Analysis of Temporal and Spatial Distribution Characteristics of Multiple Tropopauses over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2020,35(04):69.[doi:10.16836/j.cnki.jcuit.2020.01.010]
[3]骆开怡,陈权亮.青藏高原上空平流层水汽的时空演变特征[J].成都信息工程大学学报,2022,37(04):422.[doi:10.16836/j.cnki.jcuit.2022.04.010]
LUO Kaiyi,CHEN Quanliang.Temporal and Spatial Evolution Characteristics of Stratospheric Water Vapor over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):422.[doi:10.16836/j.cnki.jcuit.2022.04.010]
[4]曾 剑,张 强,张 宇,等.青藏高原高寒草甸的空气动力学粗糙度特征[J].成都信息工程大学学报,2022,37(04):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
ZENG Jian,ZHANG Qiang,ZHANG Yu,et al.The Characteristics of Aerodynamic Aoughness Length of Alpine Meadows on the Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
[5]江金昊,刘海磊,王乙竹,等.基于Himawari-8卫星数据的青藏高原大气可降水量反演算法研究[J].成都信息工程大学学报,2022,37(05):494.[doi:10.16836/j.cnki.jcuit.2022.05.002]
JIANG Jinhao,LIU Hailei,WANG Yizhu,et al.Precipitable Water Vapor Retrieval Using Himawari-8 Satellite Observations over Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):494.[doi:10.16836/j.cnki.jcuit.2022.05.002]
备注/Memo
收稿日期:2018-05-02基金项目:国家电网公司科技资助项目(521999150031)