LANG Zhiyu,LU Jun.Improvement of Information Fusion Algorithm based on Multi-sensor[J].Journal of Chengdu University of Information Technology,2019,(01):49-53.[doi:10.16836/j.cnki.jcuit.2019.01.011]
基于多传感器的信息融合算法改进
- Title:
- Improvement of Information Fusion Algorithm based on Multi-sensor
- 文章编号:
- 2096-1618(2019)01-0049-05
- 分类号:
- TP391.4
- 文献标志码:
- A
- 摘要:
- 由多传感器构成的嵌入式系统对采集到的不同数据进行融合计算的实时性要求较高,以携带有摄像头等传感器的轮式机器人巡线为例,通过传统的PID(比例、积分、微分的简称)算法策略并不能实现精准快速巡线运动。为解决这一问题,介绍一种差值融合多态PID反馈调节控制方法,此方法优化了PID公式中的积分项和微分项,提高了融合计算效率,而且输出数据更加精确,从而实现精准快速的机器人巡线运动。通过对比实验验证与传统的PID算法,文中介绍的算法在轮式机器人巡线轨道复杂的状况下也显示出良好的健壮性,并且在摄像头实时性目标识别上也有良好的表现。
- Abstract:
- The embedded system composed of multiple sensors requires high real-time performance for the fusion calculation of different data collected, take, for example, a wheeled robot line-tracking that carries sensors such as cameras and infrared sensors, through the traditional PID(proportional, integral, differential abbreviation)algorithm control strategy can’t achieve accurate and rapid patrol movement. In order to solve this problem, this paper introduces a differential fusion multi-state PID feedback adjustment control method, which optimizes the integral term and derivative term in the PID formula, improves the fusion calculation efficiency, and the output data is more accurate, there by realizing accurate and rapid robot inspection line movement.The comparison experiments show that compared with the traditional PID algorithm, the algorithm presented in this paper shows good robustness in the complicated condition of the patrolled track of the wheeled robot, and it also has a good performance in real-time target recognition of the camera.
参考文献/References:
[1] 陈海峰.移动机器人基于多传感器数据融合的定位及地图创建研究[D].大连:大连理工大学,2004.
[2] 仆荣光.基于多传感器融合的机器人嗅觉感知系统[D].天津:河北工业大学,2016.
[3] 黄静.多传感器信息融合在车辆定位与导航中的应用[D].兰州:兰州理工大学,2011.
[4] J B Gao,C J Harris.Some remarks on Kalman filters for the multisensory fusion[J].Information Fusion,2002,3:191-201.
[5] Mohammad Reza Asharif.Sensor fusion by pseudo information measure:A mobile robot Application[J].ISA Transactions,2002,41:283-301.
[6] A.Weckenmann,X.Jiang.Multisensor data fusion in dimensional metrology[J].CIRP Annals-Manufacturing Technology,2009,58:701-721.
[7] Rick S Blum,On.Multisensor image fusion performance limits from an estimation theory perspective[J]. Information Fusion,2006,7:250-263.
[8] Gerasimos G.Rigatos.Extended Kalman and Particle Filtering for sensor fusion in motion control of mobile robots[J].Mathematics and Computers in Simulation,2010,81:590-607.
[9] Ofir Cohen,Yael Edan.A sensor fusion framework for online sensor and algorithm selection[J].Robotics and Autonomous Systems,2008,56:762-776.
[10] Youngjoon Han,Hernsoo Hahn.Localization and classification of target surfaces using two pairs of ultrasonic sensors[J].Robotics and Autonomous Systems,2000,33:31-41.
[11] 余洪山.移动机器人地图创建和自主搜索方法研究[D].长沙:湖南大学,2007.
[12] 王新山.PID调节器的参数整定和正确使用[J]. 炼油化工自动化,2012(6):30-33.
[13] 尚赵伟,国庆,马尚君,等.基于二进小波变换的多车牌定位算法[J].计算机工程,2011,37(3):16-18.
[14] 李刚,黄席樾,刘政,等.基于字符边缘颜色多分量信息的车牌定位方法[J].计算机工程,2009,35(18):176-178.
[15] 张引,潘云鹤.彩色汽车图像牌照定位新方法[J].中国图像图形学报,2001,6(4):374-377.
[16] 严宇.高压输电线路巡线机器人越障与打滑控制[D].武汉:武汉大学,2014.
相似文献/References:
[1]谢莉清,何腊梅.线性等式约束下两种集合卡尔曼滤波的等价性[J].成都信息工程大学学报,2016,(03):285.
XIE Li-qing,HE La-mei.The Equivalence of Two Kinds of Ensemble Kalman
Filter with Linear Equality Constraints[J].Journal of Chengdu University of Information Technology,2016,(01):285.
[2]谢莉清,何腊梅.线性等式约束下两种集合卡尔曼滤波的等价性[J].成都信息工程大学学报,2016,(03):301.
XIE Li-qing,HE La-mei.The Equivalence of Two Kinds of Ensemble Kalman
Filter with Linear Equality Constraints[J].Journal of Chengdu University of Information Technology,2016,(01):301.
备注/Memo
收稿日期:2017-11-30基金项目:四川省科学技术厅重点研发资助项目(2017GZ0324); 四川省教育厅重大培育资助项目(17CZ0007)