CHEN Xiaoyu,ZHANG Xinyou,ZHANG Ziyan.The Application of WiFi Location Technology in Underground Parking Management System[J].Journal of Chengdu University of Information Technology,2019,(03):251-256.[doi:10.16836/j.cnki.jcuit.2019.03.008]
WiFi定位技术在地下停车场管理系统中的应用
- Title:
- The Application of WiFi Location Technology in Underground Parking Management System
- 文章编号:
- 2096-1618(2019)03-0251-06
- Keywords:
- WiFi location technology; underground parking lot; location fingerprint method; WKNN; Strongest AP method
- 分类号:
- TP311.52
- 文献标志码:
- A
- 摘要:
- 为提高地下停车资源的利用率,有效缓解城市停车难问题,采用基于位置指纹的WiFi定位方法,设计出一套适用于地下停车场的车辆实时定位系统。该系统同时与手机APP结合能够准确判断停车位置,方便用户及时查看停车信息,提高地下车位利用率。实验结果表明,系统满足在地下停车场对车辆进行定位的要求,并且把WiFi定位技术用在地下停车场管理系统中有着较强的实用性。
- Abstract:
- In order to improve the utilization rate of underground parking resources and effectively alleviate the problem of urban parking,this paper uses a location fingerprint based WiFi positioning method to design a real-time vehicle positioning system for underground parking lots. At the same time, the system combined with mobile APP can accurately judge the parking location,so that the users can view the parking information in time.This system improves the utilization rate of underground parking space. The experimental results show that the system satisfies the requirement of vehicle location in underground parking lot, and WiFi positioning technology has strong practicability in underground parking management system.
参考文献/References:
[1] 周赤忠.基于静态交通大数据系统下的智慧停车平台创新与应用[J].计算机应用与软件,2018(2):330-333.
[2] Zhou Y,Zeng G,Huang Y,et al.INDOOR SPACE LOCATION MODEL BASED ON LOCATION SERVICE[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and
SpatialInformation Sciences,2017,XLII-4/W7:49-53.
[3] 王淑婷.基于位置指纹的WiFi定位算法研究[D].吉林:吉林大学,2015.
[4] NagaokaT,Hatano H,Fujii M,et al.A study on estimation method of pedestrian's walking status for GPS positioning correction[C].International Conference on Its
Telecommunications.IEEE,2017:1-7.
[5] FaragherR,Harle R.Location Fingerprinting with Bluetooth Low Energy Beacons[J].IEEE Journal on Selected Areas in Communications,2015,33(11):1.
[6] 张胜军,林若琳.浅谈室内定位技术现状[J].测绘与空间地理信息,2018(7):128-131.
[7] 刘鹏,卢潭城,高翔.基于射频识别的室内定位技术综述[J].太赫兹科学与电子信息学报,2014,12(2):195-201.
[8] 杨狄,唐小妹,李柏渝,等.基于超宽带的室内定位技术研究综述[J].全球定位系统,2015,40(5):34-40.
[9] Pradhan S,Shin S,Kwon G R,et al.The advanced TOA trilateration algorithms with performance analysis[C].Conference on Signals,Systems & Computers.IEEE,2017:923-928.
[10] 张建平.基于WiFi的室内定位系统设计和算法研究[J].自动化技术与应用,2016,35(12):53-56.
[11] Ge X,Qu Z,Ge X,et al.Optimization WIFI indoor positioning KNN algorithm location-based fingerprint[C].IEEE International Conference on Software Engineering &
Service Science.IEEE,2017:135-137.
[12] 康静怡,韩中豪,何玉美,等.一种基于WKNN定位的改进算法[J].成都信息工程大学学报,2018(1):8-12.
[13] 杨小亮,叶阿勇,凌远景.基于阈值分类及信号强度加权的室内定位算法[J].计算机应用,2013,33(10):2711-2714.
[14] 罗利.基于Android的WIFI室内定位技术研究[D].西南交通大学,2014.
[15] 鲁勇,吕绍和,王晓东,等.基于WiFi信号的人体行为感知技术研究综述[J].计算机学报,2018:1-23.
备注/Memo
收稿日期:2018-11-30 基金项目:国家自然科学基金资助项目(61401374)