SUN Jinghui,ZHU Yi,LU Jun.Research on Obstacle Avoidance Path Planning of Manipulator based on Artificial Potential Field Method and A* Algorithm[J].Journal of Chengdu University of Information Technology,2019,(03):263-266.[doi:10.16836/j.cnki.jcuit.2019.03.010]
人工势场法与A*算法结合的机械臂避障路径规划研究
- Title:
- Research on Obstacle Avoidance Path Planning of Manipulator based on Artificial Potential Field Method and A* Algorithm
- 文章编号:
- 2096-1618(2019)03-0263-04
- Keywords:
- manipulator; artificial potential field method; A* algorithm; obstacle avoidence path planning; virtual target point
- 分类号:
- TP241
- 文献标志码:
- A
- 摘要:
- 针对人工势场法在机械臂避障路径规划中容易陷入局部极小值的问题,提出了人工势场法与A*算法相结合的路径规划方法。首先使用人工势场法控制机械臂沿合势场梯度下降方向运动,若陷入局部极小值,则采用A*算法控制其运动到虚拟目标点以逃离局部极小值,然后再转换回人工势场法继续搜索直到抵达目标点。最终的仿真实验表明,改进方法可以成功规划出一条无碰撞的最优路径,并且对较复杂的工作环境具有较高的适应性。
- Abstract:
- Aiming at the problem that artificial potential field method is easy to fall into the local minimum in obstacle avoidance path planning of manipulator, this paper proposes a path planning algorithm based on artificial potential field method and A* algorithm. Firstly, artificial potential field method controls the manipulator to move along the gradient descent direction of the resultant potential field. If the manipulator gets into the local minimum,A* algorithm will be used to control its movement to the virtual target point to escape from the local minimum. Finally, it is converted to artificial potential field method to guide the manipulator to the target point. The final simulation experiments show that the improved algorithm can successfully plan a collision-free optimal path and have higher adaptability to more complex working environments.
参考文献/References:
[1] 张智,邹盛涛,董然,等.复杂环境建模与机器人避障规划研究[J]. 哈尔滨工程大学学报,2016,37(10):1373-1380.
[2] Sekmen A, Challa P. Assessment of adaptive human-robot interactions [J]. Knowledge-based systems,2013,42(3):49-59.
[3] Ramik D M, Sabourin C, Madani K. Autonomous knowledge acquisition based on artificial curiosity: application to mobile robots in an indoor environment[J]. Robotics and
autonomous systems,2013,61(12):1680-1695.
[4] 鲍庆勇,李舜酩,沈峘,等. 自主移动机器人局部路径规划综述[J]. 传感器与微系统,2009,28(9):1-4.
[5] 马黎鹏. 基于六自由度机械臂的路径规划研究[D].广州:华南理工大学,2013.
[6] 张殿富,刘福. 基于人工势场法的路径规划方法研究及展望[J]. 计算机工程与科学,2013,35(6):88-95.
[7] 王俊龙,张国良,羊帆,等. 改进人工势场法的机械臂避障路径规划[J]. 计算机工程与应用,2013,49(21):266-270.
[8] 肖本贤,余雷,李善寿,等. 逃逸人工势场法局部极小值策略的研究[J]. 系统仿真学报,2007(19):4495-4498.
[9] Vadakkepat P,KAI Chen-tan,WANG Ming-liang.Evolutionary artificial potential fields and their application in real time robot path planning[C].Proceedings of the 2000
Congress on Evolutionary Computation,La Jolla,California,USA,Volume 1.Piscataway,NJ:IEEE,2000:256-263.
[10] YUN Xiao-ping, TAN Ko-Cheng Tan. A wall-following method for escaping local minima in potential field based motion planning[C].ICAR 97 Proceedings of 8th International
Conference on Advanced Robotics,1997, Monterey, California, USA. California: IEEE,1997:421-426.
[11] 王勇,李秀娟. 某四自由度机械臂建模与MATLAB仿真研究[J]. 电子测量技术,2015,38(2):32-36.
[12] 张化平,王宇航,陈汉卿. 六自由度机械臂运动学分析与仿真[J]. 工业仪表与自动化装置,2017(5):127-130.
[13] Hasan A T,Ismail N,Hamouda A M S.Artificial neural network-based kinematics jacobian solution for serial manipulator passing through singular configurations
[J].Advances in engineering software,2010,41(2):359-367.
[14] 金旻,叶明,刘洪广. 一种基于包围盒技术的机械臂碰撞检测算法[J]. 机电工程,2008(10):63-66.
[15] 何兆楚,何元烈,曾碧. RRT与人工势场法结合的机械臂避障规划[J]. 工业工程,2017,20(2):56-63.
[16] 祝敬,杨马英. 基于改进人工势场法的机械臂避障路径规划[J]. 计算机测量与控制,2018,26(10):205-210.
[17] 孙炜,吕云峰,唐宏伟,等.基于一种改进A*算法的移动机器人路径规划[J]. 湖南大学学报(自然科学版),2017,44(4):94-101.
[18] 肖本贤,李善寿,王晓伟,等. 基于PSO和人工势场的机器人路径规划[J]. 合肥工业大学学报(自然科学版),2007(6):718-722.
备注/Memo
收稿日期:2018-12-14