LV Zhaoyang,CHEN Jun,LIU Yi,et al.Simulation of Rainfall Runoff in the Middle Reaches of Fujiang River based on GPU[J].Journal of Chengdu University of Information Technology,2019,(03):316-322.[doi:10.16836/j.cnki.jcuit.2019.03.018]
基于图形处理器的涪江中段流域降雨汇流模拟方法研究
- Title:
- Simulation of Rainfall Runoff in the Middle Reaches of Fujiang River based on GPU
- 文章编号:
- 2096-1618(2019)03-0316-07
- Keywords:
- graphics processing unit general computation; confluence model; stable water supply; early stage water environment; the middle section of Fujiang River; 3S integration and meteorological application; meteorological geographic information system engineer
- 分类号:
- P426.6
- 文献标志码:
- A
- 摘要:
- 为增加径流汇流模型的时效性,提出一种基于图形处理器通用计算的汇流模型。首先,在稳定水源供给的条件下,通过对模型修改和完善生成流域前期水环境。最后,将小时降水数据叠加到前期水环境进行径流汇流模拟得到模拟结果。通过验证发现,模型模拟结果具有更小的水位变化误差,模拟精度进一步提高,模拟速度更快,满足实时计算要求。精度和性能的同时提升,证实汇流模型在流域暴雨洪涝灾害实时评估中具有重要的应用价值。
- Abstract:
- In order to increase the timeliness of runoff confluence model, a confluence model based on general computing of graphics processor is proposed in this paper. Firstly, under the condition of stabilizing the water supply, the water environment in the early stage of basin formation is improved by modifying the model. Finally, the hourly precipitation data are superimposed on the previous water environment to simulate the runoff confluence and get the simulation result. Through verification, it is found that the simulation result of the model have smaller water level variation error, the simulation accuracy is further improved and the simulation speed is faster. All of those meet the requirements of real-time calculation. The accuracy and performance are improved at the same time, which proves that the confluence model has important application value in real-time assessment of rainstorm and flood disasters in river basins.
参考文献/References:
[1] 李爱民.分布式水文模型研究进展[J].中国水运,2016,16(7):171-172.
[2] 王泽群.分布式水文模型的回顾与展望[J].绿色科技,2018(18):154-155.
[3] Zongxue X U.HYDROLOGICAL MODELS:PAST,PRESENT AND FUTURE[J].Journal of Beijing Normal University,2010,46(3):278-289.
[4] 何长高,董增川,陈卫宾.流域水文模型研究综述[J].江西水利科技,2008,34(1):20-25.
[5] Devia G K,Ganasri B P,Dwarakish G S.A Review on Hydrological Models[J].Aquatic Procedia,2015,4:1001-1007.
[6] 许志强,邓玉华.概念性水文模型初探[J].江苏水利,2014(11):36-37.
[7] 郑长统,梁虹.分布式水文模型研究进展[J].水科学与工程技术.2009(6):9-11.
[8] 谢帆,李致家,姚成.TOPMODEL和新安江模型的应用比较[J].水力发电,2007,33(10):14-18.
[9] 刘志勇,赖格英.分布式Topmodel模型主要应用及改进分析[J].黄石理工学院学报,2006,22(4):92-96.
[10] 芮孝芳,蒋成煜,张金存.流域水文模型的发展[J].水文,2006,26(3):32-36.
[11] Arnold J G,Moriasi D N,Gassman P W,et al.SWAT:Model use,calibration,and validation[J].Transactions of the Asabe,2012,55(4):1345-1352.
[12] 于峰,史正涛,李滨勇.SWAT模型及其应用研究[J].水科学与工程技术,2008(5):4-9.
[13] 刘军志,朱阿兴,秦承志,等.分布式水文模型的并行计算研究进展[J].地理科学进展,2013,32(4):538-547.
[14] 刘兆存,金生,韩丽华.国内流域产汇流模型与应用分析[J].地球信息科学学报,2007,9(3):96-103.
[15] Sandu M A,Virsta A.Applicability of MIKE SHE to Simulate Hydrology in Argesel River Catchment[J].Agriculture & Agricultural Science Procedia,2015(6):517-524.
[16] Thompson J R,Srenson H R,Gavin H,et al.Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England[J].Journal of
Hydrology,2004,293(1):151-179.
[17] Mcmichael C E,Hope A S,Loaiciga H A.Distributed hydrological modelling in California semi-arid shrublands:MIKE SHE model calibration and uncertainty estimation
[J].Journal of Hydrology,2006,317(3):307-324.
[18] Xue F,Huang M,Wang W,et al.Numerical Simulation of Urban Waterlogging Based on FloodArea Model[J].Advances in Meteorology,2016,2016(1):1-9.
[19] 张磊,王文,文明章,等.基于FloodArea模型的山洪灾害精细化预警方法研究[J].复旦大学学报(自然科学版),2015,54(3):282-287.
[20] 钟联波.GPU与CPU的比较分析[J].技术与市场,2009(9):13-14.
[21] 丁鹏,陈利学,龚捷,等.GPU通用计算研究[J].计算机与现代化,2010(1):12-15.
[22] 刘松,鲍建樟,李长瑜,等.GPU计算:突破制约计算化学发展的瓶颈[J].科研信息化技术与应用,2014(2):73-81.
[23] 王渺林,郭丽娟,朱辉.涪江流域气候及径流变化趋势[J].人民长江,2006,37(12):42-43.
[24] 胡毅,陈国刚,杜成华,等.涪江流域水资源变化研究[J].成都气象学院学报,1998(4):28-35.
[25] 董孟,李虎杰.绵阳市北川县地质灾害发育特征及诱发因素分析[J].科技创新导报,2008(8):189-190.
[26] 王勇,许红梅,程炳岩,等.1951—2012年降水变化对涪江流域径流的影响[J].气候变化研究进展,2014(2):127-134.
[27] 魏昕.四川2017年汛期洪涝发生分布及对农业生产的影响分析[J].四川农业与农机,2018(1):38-49.
[28] 邓国卫,孙俊,阮贵宾,等.四川省暴雨洪涝灾情特征及主汛期环流背景分析[J].高原气象,2017,36(6):1521-1532.
[29] Smiles D E,Knight J H,Smiles D E,et al.A note on the use of the Philip infiltration equation[J].Soil Research,1976,14(1):103-108.
[30] 钟联波.GPU与CPU的比较分析[J].技术与市场,2009(9):13-14.
[31] 杨柳,刘铁英.GPU架构下的并行计算[J].吉林大学学报(信息科学版),2012(6):629-632.
[32] 刘松,鲍建樟,李长瑜,等.GPU计算:突破制约计算化学发展的瓶颈[J].科研信息化技术与应用,2014(2):73-81.
[33] 张澳博.GPU并行计算分析[J].数字通信世界,2017(9):39-40.
[34] 陈庆奎,王海峰,那丽春,等.图形处理器通用计算的研究综述[J].黑龙江大学自然科学学报,2012,29(5):672-679.
[35] 覃金帛,曾志强,梁藉,等.GPU并行优化技术在水利计算中的应用综述[J].计算机工程与应用,2018(3):23-29.
[36] 刘永和,冯锦明,徐文鹏.分布式水文模型的GPU并行化及快速模拟技术[J].水文,2015,35(4):20-26.
备注/Memo
收稿日期:2018-09-25 基金项目:四川省科技厅资助项目(2017JY0157); 四川省科技厅支撑计划资助项目(2015SZ0214); 四川省国土资源厅科学研究计划资助项目(KJ-2015-18)