HE Nan,WEN Bin,CHEN Le,et al.The Fundamental Analysis Method of the Singnal of Difference of Daily Minimun Temperature[J].Journal of Chengdu University of Information Technology,2019,(04):342-345.[doi:10.16836/j.cnki.jcuit.2019.04.003]
一种新的气象数据分析和误差诊断方法
- Title:
- The Fundamental Analysis Method of the Singnal of Difference of Daily Minimun Temperature
- 文章编号:
- 2096-1618(2019)04-0342-04
- Keywords:
- daily minimum temperature; difference; multiple elements; association; law; verification
- 分类号:
- TN911.6
- 文献标志码:
- A
- 摘要:
- 各地气象部门在长期的观测业务中已积累了海量数据,需要高效手段开展再开发应用。 另一方面,高密度的自动观测站点建设已改变了气象要素采集的时空格局,站点间以气候代表 性建立的关联,已转变为很强的可同比的网格化关联,这就为高精度的气候演化计算打下了坚 实的数据基础。为了适应这样的应用,高效保障数据的可靠性和可比性,介绍在近期相关研发 工作中,设计的一种关于两个有效相关观测站点间,日最低气温差值与出现频次,关联光温水 等多种气象要素,检查数据可比性,发掘其内在规律的分析方法。介绍了数据基础的建立、要 素自然逻辑关系的拟合演算和检验方法,并为进一步评估分析提供了客观检验结果。
- Abstract:
- Meteorological departments in various places have accumulated a large amount of data in long-term observation business, and need efficient means to carry out redevelopment and application. On the other hand, the construction of high-density automatic observation stations has changed the spatial and temporal pattern of meteorological elements collection. The established relationship has been transformed into a strong year-on-year gridded association, which has laid a solid data foundation for high-precision climate evolution calculations. In order to adapt to such applications and ensure the reliability and comparability of data efficiently. This paper introduces a variety of meteorological elements such as the difference between the daily minimum temperature and the frequency of occurrence, the correlation of light and temperature, and the like, and the intrinsic regularity of the data. The analytical method is designed. The establishment of the data foundation, the fitting calculus and test methods of the natural logic relationship of the elements are introduced, and objective test results are provided for further evaluation and analysis.
参考文献/References:
[1] 郭春霞,栗忠魁,诸云强,等.局部回归克里格在气温栅格化中的应用[J].首都师范大学学
报(自然科学版),2016,37(6):85-92.
[2] 贾红莉.不同下垫面对气温观测的影响分析[J].南方农业,2016,10(9):220-221.
[3] 马顺刚,张敏,夏传清,等.基于影响因素近似的气象要素特征值分析统计[J].水力
发电,2014,40(12):16-19.
[4] 张学文,马力.大气的热力学总熵[J].大气科学,1992(3):339-344.
[5] 于杨,朱晨,赵琦,等.全球地面气温和降水定时值数据整合与初步质量控制[J].气
象与环境学报,2016,32(6):94-101.
[6] 潘江萍. 浏阳站自动观测与人工观测温度数据差值对比分析[A]. 中国气象学会.
第28届中国气象学会年会——S1第四届气象综合探测技术研讨会[C].中国气象学会:中国气
象学会,2011:3.
[7] 陆占东.地面气象观测数据异常处理与对策探究[J].科技风,2019(5):127.
[8] 黄英华,马永忠.综合气象观测业务管理控制要点[J].南方农机,2019,50(2):50.
[9] 高健.气象观测数据传输的影响因素定性分析[J].科技风,2019(3):121-122.
[10] 武晋雯,冯锐,纪瑞鹏,等.农作物气象保障服务平台研究进展与存在的问题[J].地
理空间信息,2019,17(1):10-13.
[11] 王正,支蓉,封国林,等.典型场选取对多要素气候态相似季节划分的影响[J].气候
变化研究进展,2018,14(4):350-361.
[12] 刘恒,孟瑞丽,徐佳棋,等.多要素自动气象站教学实验设计[J].中国现代教育装备
,2017(21):5-8.
[13] 王金东.基于气象要素评估结果的数据质量控制系统设计[D].济南:齐鲁工业大学
,2016.
[14] 桑秋璐.气象自动站对历史资料的连续性影响[J].北京农业,2013(27):129-130.
备注/Memo
收稿日期:2018-12-28 基金项目:四川省科学技术厅科技支撑计划重点资助项目(2018 NZ0051)