LIANG Jian,REN Hongli,CHEN Quanliang.Diagnosing Effect of Total Solar Irradiance on the Decadal Variability of SST over the Tropical Central Pacific[J].Journal of Chengdu University of Information Technology,2019,(05):525-531.[doi:10.16836/j.cnki.jcuit.2019.05.014]
太阳总辐照度对热带中太平洋海表温度年代际变化的可能影响
- Title:
- Diagnosing Effect of Total Solar Irradiance on the Decadal Variability of SST over the Tropical Central Pacific
- 文章编号:
- 2096-1618(2019)05-0525-07
- Keywords:
- meteorology; climate dynamics; solar radiation; decadal variability; tropical centralPacific; SST; TSI
- 分类号:
- P461+.1
- 文献标志码:
- A
- 摘要:
- 为研究分析热带太平洋海表温度(SST)年代际变化对太阳辐射响应,利用SST资料、20世纪再分析资料和第六次耦合模式比较计划(CMIP6)所提供的太阳总辐照度(TSI)数据,采用线性回归的方法对TSI对热带太平洋SST年代际变化的可能影响进行了诊断研究。结果表明,热带中太平洋SST存在与TSI类似的准11年周期变化信号,TSI与SST以及其他海气变量之间存在显著相关关系。SST异常在滞后于TSI信号1~3年时的正相关达到最强,证实了热带中太平洋海表温度可能存在对TSI信号的滞后响应。进一步分析表明,由TSI所直接引起的海表净短波辐射变化可能是热带中太平洋SST在年代际尺度上变化的直接原因。海表温度的年代际异常可以通过海气相互作用引起表层纬向风的变化,并反过来增强SST的年代际变化信号。TSI正位相引起的SST正异常可促使对流层温度上升、空气中的水汽增加、上升运动加强等相应变化,进而使得总云量增加,因此滞后2~3年后可能会由于云-辐射反馈而引起进入海洋净短波辐射量的减少。
- Abstract:
- The response of decadal sea surface temperature(SST)variations in the tropical Pacific to solar radiation is discussed. Possible effects of the total solar irradiance(TSI)on the decadal variation of SST in the tropical central Pacific are diagnosed using the linear regression based on HadI SST, 20th-Century reanalysis, and TSI datasets. The results show that the SST anomaly in the tropical central Pacific is clearly lagged behind the TSI with a period of quasi-11 year. By comparing the relationships between the TSI index and SST as well as other atmospheric variables, the SST anomaly pattern is featured by the most significantly positive correlation at lag 1-3 years, confirming the presence of the TSI signals in the decadal SST anomalies in the tropical central Pacific but with a lag response. The net shortwave radiation caused in phase by the TSI is clearly the direct contributor to the warming of the tropical Pacific SST on the decadal timescale even though it might be reduced by the cloud-radiation feedback after 2-3 lag years. The positive SST anomalies could in duce changes in the surface zonal wind and might be in turn enhanced by the westerly wind anomalies through air-sea interaction over the tropical central Pacific.Also, these SST anomalies can warm tropospheric temperature and increase moisture into air, which favor formation of more cloud accompanied with the ascending motion. Both the responses of surface zonal wind and total cloud amount may provide a feedback onto SST itself in terms of dynamical and thermodynamical processes.
参考文献/References:
[1] Beer J,Blinov A,Bonani G,et al.Use of 10Be in polar ice to trace the 11-year cycle of solar activity[J].Nature,1990,347(6289):164-166.
[2] White W B,Lean J,Cayan D R,et al.Response of global upper ocean temperature to changing solar irradiance[J].Journal of Geophysical Research Oceans,1997,102(C2):3255-3266.
[3] Rind D.The Sun’s Role in Climate Variations[J].Science,2002,296(5568):673-677.
[4] 李崇银,翁衡毅,高晓清,等.全球增暖的另一可能原因初探[J].大气科学,2003,27(5):789-797.
[5] Rind D,Lean J,Lerner J,et al.Exploring the stratospheric/tropospheric response to solar forcing[J].Journal of Geophysical Research Atmospheres,2008,113(D24).
[6] Zhao L,Wang J,Zhao H.Solar Cycle Signature in Decadal Variability of Monsoon Precipitation in China[J].Journal of the Meteorological Society of Japan,2012,90(1):1-9.
[7] Pittock A B.A critical look at long-term Sun-weather relationships[J].Reviews of Geophysics,1978,16(3):400-420.
[8] Kodera K.Solar influence on the Indian Ocean Monsoon through dynamical processes[J].Geophysical Research Letters,2004,31(24):1183-1186.
[9] Meehl G A,Arblaster J M,Matthes K,et al.Amplifying the Pacific climate system response to a small 11-year solar cycle forcing[J].Science,2009,325(5944):1114-1118.
[10] 肖子牛,霍文娟.太阳活动影响气候的放大过程之时空选择性[J].气象科技进展,2016,6(3):141-147.
[11] 胡敦欣.海洋在中国气候变化中的作用[C].中国地球物理学会年会,2007.
[12] Huo W J,Xiao Z N.Anomalous pattern of ocean heat content during different phases of the solar cycle in the tropical Pacific[J].Atmospheric and Oceanic Science Letters,2017,10(1):9-16.
[13] Loon H V,Meehl G A,Shea D J.Coupled air-sea response to solar forcing in the Pacific region during northern winter[J].Journal of Geophysical Research Atmospheres,2007,112(D2).
[14] Roy I,Haigh J D.Solar Cycle Signals in the Pacific and the Issue of Timings[J].Journal of the Atmospheric Sciences,2012,69(4):1446-1451.
[15] 王瑞丽,肖子牛,朱克云,等.太阳活动变化对东亚冬季气候的非对称影响及可能机制[J].大气科学,2015,39(4):815-826.
[16] 刘鹏,江志红,于华英,等.全球海表温度在不同时间尺度的主模态对比分析[J].地球科学进展,2014,29(7):844-853.
[17] Zhou J S,Tung K K.Solar cycles in 150 years of global sea surface temperature data[J].Journal of Climate,2010,23(12):3234-3248.
[18] Wang G,Yan S,Qiao F.Decadal variability of upper ocean heat content in the Pacific:Responding to the 11-year solar cycle[J].Journal of Atmospheric and Solar-Terrestrial Physics,2015,135:101-106.
[19] Meehl G A,Arblaster J M,Branstator G,et al.A Coupled Air Sea Response Mechanism to Solar Forcing in the Pacific Region[J].Journal of Climate,2008,21(12):2883-2897.
[20] Roy I,Haigh J D.Solar cycle signals in sea level pressure and sea surface temperature[J].Atmospheric Chemistry & Physics Discussions,2010,10(6):3147-3153.
[21] Kodera K.Possible solar modulation of the ENSO cycle[J].Papers in Meteorology & Geophysics,2005,55(1/2):21-32.
[22] Misios S,Schmidt H. Mechanisms Involved in the Amplification of the 11-yr Solar Cycle Signal in the Tropical Pacific Ocean[J].Journal of Climate,2012,25(14):5102-5118.
[23] Roy I.The role of the Sun in atmosphere-ocean coupling[J].International Journal of Climatology,2014,34(3):655-677.
[24] Bjerknes J.Atmospheric teleconnection s from the equatorial pacific[J].Monthly Weather Review,1969,97(3),163-172.
[25] Kodera K,Coughlin K,Arakawa O.Possible modulation of the connection between the Pacific and Indian Ocean variability by the solar cycle[J].Geophysical Research Letters,2007,34(3):145-149.
[26] Kodera K.Solar Influence on Troposphere Through the Polar and the Equatorial Stratosphere[C].AGU Fall Meeting.AGU Fall Meeting Abstracts,2004.
[27] Kodera K,Kuroda Y.Dynamical response to the solar cycle[J].Journal of Geophysical Research Atmospheres,2002,107(D24):ACL-1-ACL 5-12.
[28] Matthes K,Kuroda Y,Kodera K,et al.Transfer of the solar signal from the stratosphere to the troposphere:Northern winter[J].Journal of Geophysical Research Atmospheres,2006,111(D6).
[29] 傅逸贤,彭莹辉.云量在“地-气”系统净辐射中的作用[J].气象科学,1988(4):72-78.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(05):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(05):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(05):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(05):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(05):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(05):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(05):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(05):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(05):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(05):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
备注/Memo
收稿日期:2019-02-21基金项目:国家重点研发资助项目(2018YFC1506004); 国家自然科学基金资助项目(41575091、41606019、41605116); 中国气象局公益专项研究基金资助项目(GYHY201506013)