SHE Jiachun,LIU Tao,MEI Ruowei,et al.Test Data Automatic Generation based on Modified Artificial Fish Swarm Algorithm[J].Journal of Chengdu University of Information Technology,2019,(06):595-599.[doi:10.16836/j.cnki.jcuit.2019.06.006]
基于改进的人工鱼群算法的软件测试数据自动生成算法
- Title:
- Test Data Automatic Generation based on Modified Artificial Fish Swarm Algorithm
- 文章编号:
- 2096-1618(2019)06-0595-05
- 分类号:
- TP311.55
- 文献标志码:
- A
- 摘要:
- 针对软件测试领域的数据自动生成问题,提出一种改进人工鱼群算法(AFSA)的方案。在对人工鱼群算法的觅食行为、群聚行为、追尾行为中引入动态步长的观点,让迭代次数和效率得到进一步的优化。用改进的人工鱼群算法解决直角三角形判别程序的测试数据生成问题,结果表明在不同数量的种群下改进的人工鱼群算法的收敛速度快,求解精度高,优于传统的遗传算法(GA)、粒子群优化算法(PSO)等方法。
- Abstract:
- Aiming at the problem of automatic data generation in software testing field, an improved artificial fish swarm algorithm(AFSA)is proposed. The dynamic step is proposed into the praying, swarming and following behaviors of artificial fish swarm algorithm, which further optimizes the iteration times and efficiency. The improved artificial fish swarm algorithm is used to solve the problem of test data generation of right triangle discriminant program. The results show that the improved AFSA has advantage of fast convergence speed and high accuracy under different populations over the traditional GA and PSO methods.
参考文献/References:
[1] Korel B.Automated software test data generation[J].IEEE Transactions on Software Engineering,1990,16:870-879.
[2] Korel B.Automated test data generation for programs with procedures,in Proceedings of the 1996 International Symposium on Software Testing and Analysis[J].ACM Press,1996:209-215.
[3] Christophe Meudec.ATGen:automatic test data generation using constraint logic programming and symbolic execution[J].Software testing,verification and reliability,2001,11:81-96.
[4] 马臻,张毅坤,梁荣,等.基于免疫遗传算法的构件化软件测试用例生成[J].计算机工程,2006,32(23):64-67.
[5] 陈明师,刘晓洁,李涛.基于多态蚁群算法的测试用例自动生成.计算机应用研究,2009,26(6):2347-2348.
[6] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
[7] 袁爱平,唐一韬,万灿军.基于粒子群优化算法的软件测试数据生成研究[J].计算机与数字工程,2013,41(2):163-164.
[8] 夏芸,刘锋.基于免疫遗传算法的软件测试数据自动生成[J].计算机应用,2008,28(3):723-725.
备注/Memo
收稿日期:2019-09-19基金项目:四川省教育厅科研资助项目(18ZA0111); 四川省科技厅-四川省省院省校科技合作研发项目(2018JZ0030)