YAN Manyu,WEN Chengyu.Medical Ultrasound Image Denoising Algorithm based on Improved PM Model[J].Journal of Chengdu University of Information Technology,2019,(06):600-605.[doi:10.16836/j.cnki.jcuit.2019.06.007]
改进的PM模型的医学超声图像去噪算法
- Title:
- Medical Ultrasound Image Denoising Algorithm based on Improved PM Model
- 文章编号:
- 2096-1618(2019)06-0600-06
- Keywords:
- ultrasound image; traditional PM model; diffusion direction; diffusion coefficient function
- 分类号:
- TP751.1
- 文献标志码:
- A
- 摘要:
- 为解决传统的各向异性扩散算法在医学超声波图像处理方面存在着细节信息保留欠佳和去噪效果不明显的两个缺陷,提出了一种改进的Perona-Malik模型(PM模型)。方法主要从两个方面对PM模型进行改进,首先将传统的PM扩散模型选取4个方向改进为8个扩散方向,最后通过各方向梯度值和图像梯度变化关系来选取不同扩散函数,从而将传统PM模型的单一扩散方式改在不同区域有不同的扩散特性,进一步提高去噪效果,更好保留细节。通过matlab进行算法仿真,从仿真结果峰值信噪比和均方根误差这两个评价图像质量指标表明,改进后模型在去除图像中的噪声和保护细节信息这两个方面都优于PM模型和HW模型。
- Abstract:
- In order to solve the two defects of poor preserve in detailed information and unconspicuous denosing effect of traditional anisotropic diffusion algorithm, which in the filed of medical ultrasonic image processing Therefore, based on this model, an improved Perona-Malik(PM model)is proposed.This method mainly improves the PM model in two aspects. Firstly, the traditional PM diffusion model is improved from four directions to eight diffusion directions. Finally, different diffusion functions are selected by the gradient values of directions and the image gradient variation relationship, so that the single diffusion mode of the traditional PM model is altered to which has different diffusion characteristics in different regions, which further improves the denoising effect and better preserves the details. Through algorithm simulation of matlab, the simulation results, two image quality indicators of peaksignal’s noise ratio and root mean square error show that the improved model is superior to the PM and HW model in both image denosing and details protection.
参考文献/References:
[1] Christos P Loizou,Constantinos S Pattichis.Despeckle Filtering Algorithms and Software for Ultrasound Imaging[M].Morgan & Claypool Publishers series,2008:45-74.
[2] 李坚.抑制斑点噪声的超声图像滤波算法比较研究[D].广州:华南理工大学,2015.
[3] 韩寒.超声图像滤波以及增强算法研究[D].哈尔滨:哈尔滨工业大学,2010.
[4] 白俊奇,陈钱.基于各向异性扩散的红外图像噪声滤波算法[J].光学学报,2010,30(3):373-377.
[5] Catte F,Lions P L,Morel J M. Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis.1992,29(1):182-193.
[6] 冷成财,赵凤群,戴芳,等.PM模型扩散函数的改进[J].计算机与现代化,2008,40(1):19-20.
[7] 洪志强,张立亭.基于改进的各向异性扩散图像去噪算法研究[J].江西科学,2017,35(3):35-39.
[8] Perona P,Malik J. Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):29-39.
[9] 许光宇,李玲.一种改进的非局部平均图像去噪算法[J].计算机应用与软件,2017,(7).
[10] 庞建新.图像质量客观评价的研究[D].合肥:中国科学技术大学,2008.
[11] M Szczypinski,M Strzelecki,A Materka,et al.A software package for image texture analysis,Comp[J].Methods Prog.Biomed,2008,94(1):66-76.
[12] Christos P Loizou,Constantinos S Pattichis.Comparative Evaluation of Despeckle Filtering In Ultrasound Imaging of the Carotid Artery[J].IEEE transactions on ultrasonics,ferroelectrics, and frequency control,2005,52(10):53-64.
[13] 周桂荣,李德来.使用Field-II进行超声波束形成的设计仿真[J].中国医疗器械信息,2015(6):31-38.
[14] 史亚政.超声图像处理的仿真与实现[D].成都:电子科技大学,2010.
[15] 王亚强,陈波.一种改进的各向异性扩散超声图像去噪算法[J].液晶与显示,2015,30(2):30-36.
[16] 李鸣.一种改进的各向异性扩散去噪算法[J].光电子技术,2014,34(4):34-36.
备注/Memo
收稿日期:2019-04-08