XIA Chaoyu,GAO Yuxiang,GUO Chunni,et al.CS-TWR Multipath Model and Fast Building Method[J].Journal of Chengdu University of Information Technology,2020,35(01):26-30.[doi:10.16836/j.cnki.jcuit.2020.01.005]
CS-TWR多径模型及快速搭建方法
- Title:
- CS-TWR Multipath Model and Fast Building Method
- 文章编号:
- 2096-1618(2020)01-0026-05
- 分类号:
- TN951
- 文献标志码:
- A
- 摘要:
- 针对压缩感知穿墙雷达(CS-TWR)中,基于斯涅尔定律的多径时延估计算法复杂度高、计算量大等问题。依据电磁波在墙体中传播的几何路径,推导出一种有效且快捷的多径时延估计算法,用于快速建立多径通路模型,以减少成像耗时。将所提算法的估计时延应用于过完备字典建立,通过分段弱正交匹配追踪能够反演出无虚像的B-scan图,从而验证所提算法的有效性及准确性。并通过实验证明,所提时延估计算法比传统斯涅尔定律约快4倍。
- Abstract:
- For the compressive sensing through-the-wall radar(CS-TWR), multi-path time delay estimation algorithm based on Snell’s law is complex and computational intensive. Based on the geometric path of electromagnetic wave propagating in the wall, an effective and fast algorithm for estimating multipath time delay is deduced in this paper, which can be used to quickly establish multipath path model to reduce imaging time. Experiments show that the proposed fast time delay estimation algorithm is about 4 times faster than the traditional estimation algorithm. Through Segmentation-weak orthogonal matching tracking, the B-scan image without virtual image can be retrieved, thus verifying the effectiveness and accuracy of the proposed algorithm.And the proposed algorithm is applied to the establishment of over-complete dictionary.
参考文献/References:
[1] Guo S,Cui G,Kong L,et al.Multipath Analysis and Exploitation for MIMO Through-the-Wall Imaging Radar[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(10):3721-3731.
[2] Guo S,Yang X,Cui G,et al.Multipath ghost suppression for through-the-wall imaging radar via array rotating[J].IEEE Geoscience and Remote Sensing Letters,2018,15(6):868-872.
[3] Setlur P,Smith G E,Ahmad F,et al.Target localization with a single sensor via multipath exploitation[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(3):1996-2014.
[4] 夏朝禹,高瑜翔,黄坤超,等.基于组合滤波的压缩感知穿墙雷达杂波抑制[J].电讯技术,2019,59(10):1186-1190.
[5] 陈曦.穿墙雷达成像处理技术研究[D].合肥:中国科学技术大学,2015.
[6] Leigsnering M,Ahmad F,Amin M G,et al.Parametric dictionary learning for sparsity-based TWRI in multipath environments[J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(2):532-547.
[7] 葛薇,张照,彭正辉,等.基于SFCW雷达的多场景墙体参数反演[J].电子测量技术,2017,40(5):32-36.
[8] Leigsnering M,Ahmad F,Amin M G,et al.Compressive sensing-based multipath exploitation for stationary and moving indoor target localization[J].IEEE Journal of Selected Topics in Signal Processing,2015,9(8):1469-1483.
[9] 朱江,李家强,朱艳萍,等.基于透射系数的穿墙雷达墙体参数估计[J].现代雷达,2018,40(7):74-78.
[10] 张华美,张业荣,王芳芳.墙体参数未知时的穿墙雷达实时成像方法[J].电子学报,2016,44(7):1613-1618.
[11] Korki M,Zhang J,Zhang C,et al.Iterative Bayesian reconstruction of Non-IID block-sparse signals[J].IEEE Transactions on Signal Processing,2016,64(13):3297-3307.
[12] Xia C Y,Yu J,Gao Y X,et al.Radar Imaging based on Orthogonal Matching Pursuit via Sparse Constraint[J].Journal of Physics:Conference Series.IOP Publishing,2019,1237(3):032006.
[13] Xia C Y,Gao Y X,Yu J,et al.Block-sparse signal recovery based on orthogonal matching pursuit via stage-wise weak selection[J].Signal,Image and Video Processing,2019:1-9.
[14] Xia C,Gao Y,Yu J.A novel approach for Sparse Imaging of Through-wall Radar[J].Journal of Physics:Conference Series.IOP Publishing,2019,1237(3):032001.
[15] Mishali M,Eldar Y C.From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals[J].IEEE Journal of selected topics in signal processing,2010,4(2):375-391.
相似文献/References:
[1]余 杰,夏朝禹,杜 江.基于CS-TWR的动态阈值贪婪算法成像研究[J].成都信息工程大学学报,2019,(05):462.[doi:10.16836/j.cnki.jcuit.2019.05.003]
YU Jie,XIA Chaoyu,DU Jiang.Imaging Research of Dynamic Threshold Greedy Algorithm based on CS-TWR[J].Journal of Chengdu University of Information Technology,2019,(01):462.[doi:10.16836/j.cnki.jcuit.2019.05.003]
[2]李俊潇,何培宇,崔 敖,等.一种基于压缩感知的均匀线阵频率不变波束优化方法[J].成都信息工程大学学报,2019,(06):565.[doi:10.16836/j.cnki.jcuit.2019.06.001]
LI Junxiao,HE Peiyu,CUI Ao,et al.A Uniform Linear Array Frequency Invariant Beam Optimization Method based on Compressed Sensing[J].Journal of Chengdu University of Information Technology,2019,(01):565.[doi:10.16836/j.cnki.jcuit.2019.06.001]
[3]杜鑫昌,高瑜翔.基于混沌压缩感知的多图像隐藏加密算法[J].成都信息工程大学学报,2022,37(05):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
DU Xinchang,GAO Yuxiang.Multi-image Hiding Encryption Algorithm based on Chaotic Compressed Sensing[J].Journal of Chengdu University of Information Technology,2022,37(01):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
备注/Memo
收稿日期:2019-07-01