PDF下载 分享
[1]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151-157.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(02):151-157.[doi:10.16836/j.cnki.jcuit.2020.02.005]
点击复制

基于注意力的深度协同在线学习资源推荐模型

参考文献/References:

[1] 孟祥武, 纪威宇, 张玉杰. 大数据环境下的推荐系统[J]. 北京邮电大学学报, 2015, 38(2): 1-15.
[2] Huang Liwei, Liu Yanbo. Recommendation system based on Deep Learning [J]. Journal of Computer, 2017, 40: 1-28.
[3] ZhangH, Huang T, Lv Z, et al. MCRS: A course recommendation system for MOOCs [J]. Multimedia Tools and Applications, 2017: 1-19.
[4] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J]. 计算机学报,2018, 41(7): 1619-1647.
[5] LIU J, WU C. Deep Learning Based Recommendation: A Survey[M]. Information Science and Applications, 2017:103-109.
[6] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]. Proceedings of the 1st workshop onDeep Learning for Recommender Systems. New York: ACM, 2016: 7-10.
[7] He XN, Liao LZ, Zhang H W, et al. Neural collaborative filtering [C]. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017: 173-182.
[8] Zheng L, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation[C]. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017: 425-434.
[9] Shen Xiaoxuan, Yi Baolin, Zhang Zhaoli, et al. Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network[C]. Proceedings of 2016 International Symposium on Educational Technology, Beijing: IEEE, 2016: 30-34.
[10] Jingyuan Chen,Hanwang Zhang,Xiangnan He,et al.Attentive Collaborative Filtering: Multimedia Recommendation with Item-and Component-Level Attention [C]. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 2017: 335-344.
[11] Xiangnan He,Tat-Seng Chua. Neural factorization machines for sparse predictive analytics [C]. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.
[12] He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2016: 549-558.
[13] Evangelia Christakopoulou and George Karypis.Local Item-Item Models for Top-N Recommendation[C].Proceedings of the 10th ACM Conference on Recommender Systems. ACM,2016:67-74.
[14] Bayer I, He X, Kanagal B, et a1. A generic coordinate descent framework for learning from implicit feedback[C]. Proceedings of the26th International Conference on World Wide Web. International World cede Web Conferences Steering Committee, 2017: 1341-1350.
[15] He X,Chen T,Kan M Y,et al.Trirank: Review-aware explainable recommendation by modelingaspects[C].Proceedings of the 24th ACM International on Conference on Information on Conference on and Knowledge Management,2015:1661-1670.

相似文献/References:

[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(02):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(02):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[3]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[4]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(02):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[5]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(02):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(02):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[8]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(02):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]

备注/Memo

收稿日期:2019-12-30 基金项目:国家自然科学基金资助项目(61806170)

更新日期/Last Update: 2020-04-30