FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(02):151-157.[doi:10.16836/j.cnki.jcuit.2020.02.005]
基于注意力的深度协同在线学习资源推荐模型
- Title:
- An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation
- 文章编号:
- 2096-1618(2020)02-0151-07
- Keywords:
- deep learning; collaborative filtering; attention mechanism; online courses; recommend model
- 分类号:
- TP391.3
- 文献标志码:
- A
- 摘要:
- 推荐可以看作是一个匹配问题,即为适当的用户匹配适当的项。针对学习平台和课程资源数量剧增以及在线资源分散使得课程推荐质量不佳等问题,将注意力机制和深度学习融入课程推荐问题中,提出一个基于注意力的深度协同在线学习资源推荐模型来为高阶课程集关系进行建模。该模型结合学习者信息和课程资源特征,学习用户和课程的隐性线性特征和非线性特征,进行多模态特征拼合,融入注意力机制思想区分不同成对项目集对预测结果的贡献程度,以提升模型表示用户和课程的准确性,提高推荐性能。通过爬取慕课网(MOOC)上2014—2019年的学习数据进行实验,结果表明提出的模型在数据集userlabel08rl上多项评价指标要明显优于其它推荐算法。
- Abstract:
- A recommendation can be thought as a matching problem, i.e., matching the appropriate item for the appropriate user. Aiming at the problems such as the increasing number of learning platforms and course resources and the poor quality of course recommendation caused by online resource dispersion, this paper integrates the attention mechanism and deep learning into the course recommendation, and proposes an attention-based deep collaborative filtering model for online learning resource recommendation so as to model the high-level course set relation. This model combines the characteristics of learner information and course resources to learn the invisible linear features and nonlinear features of the user and the course, and performs multi-modal feature matching, in order to improve the accuracy of the model in representing the user and the course and the recommendation performance. Through the experiment of crawled learning data from 2014 to 2019 on the MOOC network(MOOC), the results show that the proposed model in this paper is significantly better than other recommendation algorithms in multiple evaluation indexes on the real data set userlabel08rl.
参考文献/References:
[1] 孟祥武, 纪威宇, 张玉杰. 大数据环境下的推荐系统[J]. 北京邮电大学学报, 2015, 38(2): 1-15.
[2] Huang Liwei, Liu Yanbo. Recommendation system based on Deep Learning [J]. Journal of Computer, 2017, 40: 1-28.
[3] ZhangH, Huang T, Lv Z, et al. MCRS: A course recommendation system for MOOCs [J]. Multimedia Tools and Applications, 2017: 1-19.
[4] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J]. 计算机学报,2018, 41(7): 1619-1647.
[5] LIU J, WU C. Deep Learning Based Recommendation: A Survey[M]. Information Science and Applications, 2017:103-109.
[6] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]. Proceedings of the 1st workshop onDeep Learning for Recommender Systems. New York: ACM, 2016: 7-10.
[7] He XN, Liao LZ, Zhang H W, et al. Neural collaborative filtering [C]. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017: 173-182.
[8] Zheng L, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation[C]. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017: 425-434.
[9] Shen Xiaoxuan, Yi Baolin, Zhang Zhaoli, et al. Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network[C]. Proceedings of 2016 International Symposium on Educational Technology, Beijing: IEEE, 2016: 30-34.
[10] Jingyuan Chen,Hanwang Zhang,Xiangnan He,et al.Attentive Collaborative Filtering: Multimedia Recommendation with Item-and Component-Level Attention [C]. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 2017: 335-344.
[11] Xiangnan He,Tat-Seng Chua. Neural factorization machines for sparse predictive analytics [C]. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.
[12] He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2016: 549-558.
[13] Evangelia Christakopoulou and George Karypis.Local Item-Item Models for Top-N Recommendation[C].Proceedings of the 10th ACM Conference on Recommender Systems. ACM,2016:67-74.
[14] Bayer I, He X, Kanagal B, et a1. A generic coordinate descent framework for learning from implicit feedback[C]. Proceedings of the26th International Conference on World Wide Web. International World cede Web Conferences Steering Committee, 2017: 1341-1350.
[15] He X,Chen T,Kan M Y,et al.Trirank: Review-aware explainable recommendation by modelingaspects[C].Proceedings of the 24th ACM International on Conference on Information on Conference on and Knowledge Management,2015:1661-1670.
相似文献/References:
[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(02):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的
自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on
Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(02):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
[3]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[4]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(02):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[5]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(02):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(02):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[8]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(02):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
备注/Memo
收稿日期:2019-12-30 基金项目:国家自然科学基金资助项目(61806170)