SUN Yidan,LI Maoshan,LV Zhao,et al.Surface Albedo of Nagqu on Tibet Plateau and its Application in Model[J].Journal of Chengdu University of Information Technology,2020,35(03):330-340.[doi:10.16836/j.cnki.jcuit.2020.03.014]
青藏高原那曲地区地表反照率及其在模式中的应用
- Title:
- Surface Albedo of Nagqu on Tibet Plateau and its Application in Model
- 文章编号:
- 2096-1618(2020)03-0330-11
- Keywords:
- meteorology; numerical simulation; surface albedo; Tibet Plateau; Noah-MP; satellite remote sensing
- 分类号:
- P422
- 文献标志码:
- A
- 摘要:
- 为探究青藏高原那曲地区地表反照率的特征,并将其应用在陆面模式中,改进模式参数和参数化方案,利用2010年的地面观测数据和MODIS产品MCD43C3的卫星遥感数据,对局地的地表反照率时间变化特征进行分析和比较。同时利用Noah-MP陆面模式进行能量通量的模拟,揭示地表反照率对能量收支平衡的影响,运用统计量分析和相关分析,评估模式模拟的效果。主要得到以下结果:(1)全年地表反照率存在明显的波动性,大部分的反照率值处于0.15~0.30,给反照率带来主要影响的因素是积雪和植被。月变化的趋势呈现出不明显的“双峰单谷”,同时具有明显的季节变化特征,夏、秋季小,春、冬季大,表现为:春季>冬季>秋季>夏季。日变化特征则表现出早晚大、中午小的“U”型分布。(2)对比MODIS产品短波波段的白空反照率(WSA)和黑空反照率(BSA)与地面观测结果发现:地面观测结果>WSA>BSA,但变化特征有较好的一致性,导致MODIS地表反照率与观测结果产生偏差的原因主要是积雪。季节变化上,WSA的趋势与观测值基本一致,BSA却是冬季>春季,可以认为阴天和降雪给卫星反演质量带来的影响较大。(3)通过将实测的反照率替换模式中反照率进行敏感性试验,结果发现:Noah-MP模式对反射辐射具有较好的模拟效果。感热通量和潜热通量对地表反照率存在一定的敏感性,模式模拟值与实测值的日变化特征保持一致,白天处于峰值,夜间处于谷值,Noah-MP模式对感潜热通量在夜间的模拟效果都远好于白天。改变地表反照率后,模拟效果的好坏在各月表现出一定的差异性,以11月为例,反射辐射和感潜热通量的模拟效果都得到了一定改进。
- Abstract:
- In order to explore the characteristics of surface albedo in Nagqu area of Tibet plateau and apply it to land surface model, the model parameters and parameterization scheme are improved.Variation characteristics of local surface albedo are analyzed and compared based on observation data of Nagqu in 2010 and satellite remote sensing data of MODIS product MCD43C3. In addition, Noah-MP is used to simulate the energy flux to reveal the influence of surface albedo on the energy balance. Statistical analysis and correlation analysis are used to evaluate the effect of model simulation. The main results are as follows:(1)The annual surface albedo has apparentvolatility, but most of the albedo values are between 0.15 and 0.30. The main factors that affect the surface albedo are snow cover and vegetation. The trend of monthly change shows "double peak and single valley". The surface albedo has obvious seasonal variation characteristics, which is small in summer and autumn, and large in spring and winter. It is expressed as:spring>winter>autumn>summer. Similarly, the diurnal variation characteristics of surface albedo are also relatively significant, showing a u-shaped distribution with large in the morning and evening and small at noon.(2)By comparing the white sky albedo(WSA)and black sky albedo(BSA)of short-wave band with the observation results, it can be found that the observation results are larger than others, but the variation characteristics have a good consistency, and the main reason for the deviation between MODIS surface albedo and the observation results is the snow cover. In terms of seasonal changes, the trend of WSA is basically consistent with the observed value, while the trend of BSA in winter is higher than in spring. It can be considered that overcast days and snowfall have a greater impact on satellite inversion quality.(3)By performing a sensitivity test comparing the measured albedo with the albedo in the model, the results found that Noah-MP has a good simulation effect on reflected radiation. Sensible heat flux and latent heat flux are sensitive to surface albedo. The diurnal variation characteristics of the simulated values are consistent with the measured values. They are at peak during the day and at valley at night. The Noah-MP mode has a much better simulation effect on latent heat flux at night than during the day. After the improvement of the surface albedo, the simulation effect shows some differences in each month. Taking November as an example, the simulation effect of reflected radiation and the sensible heat flux and latent heat flux have been improved to some extent.
参考文献/References:
[1] 李英,胡泽勇.藏北高原地表反照率的初步研究[J].高原气象,2006,25(6):1034-1041.
[2] 陈爱军,曹晓云,韩琛惠,等.2000-2016年青藏高原地表反照率时空分布及动态变化[J].气候与环境研究,2018,23(3):99-109.
[3] 陈隆勋,龚知本,温玉璞,等.东亚地区的大气辐射能的收支(一)——地球和大气的太阳辐射能收支[J].气象学报,1964(2):22-37.
[4] 朱福康.夏季青藏高原地面反照率和净辐射特征[J].科学通报,1989,34(21):1639-1639.
[5] 钟强.Characteristics of Variation in Surface Albedo and Snow Forcing over the Tibetan Plateau[J].Acta Meteorologica Sinica,1998,12(2):177-189.
[6] 邓孺孺.青藏高原地表反照率反演及冷热源分析[D].北京:中国科学院研究生院(遥感应用研究所),2002.
[7] Duo C,Weiqiang M,Dunzhu Z.Land Surface Albedo in the North Tibetan Plateau from Ground Observations and MODIS[J].Remote Sensing Technology and Application,2015,30(5).
[8] 杨成,姚济敏,赵林,等.藏北高原多年冻土区地表反照率时空变化特征[J].冰川冻土,2016(6).
[9] 陈爱军,梁学伟,卞林根,等.青藏高原MODIS地表反照率反演质量分析[J].高原气象,2016,35(2):277-284.
[10] 陈爱军,吴倩倩,卞林根,等.青藏高原MODIS地表反照率与地面观测结果的比较[J].科技通报,2016(11).
[11] 陈爱军,梁学伟,卞林根,等.青藏高原MODIS地表反照率反演结果的空间分布[J].高原气象,2016(6).
[12] 罗斯琼,吕世华,张宇,等.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象,2008,27(2):259-271.
[13] 张果,薛海乐,徐晶,等.东亚区域陆面过程方案Noah和Noah-MP的比较评估[J].气象,2016,42(9):1058-1068.
[14] 叶丹.陆面模式Noah-MP中不同参数化方案在西北干旱半干旱区的适用性[D].兰州:兰州大学,2016.
[15] 叶丹,张述文,王飞洋,等.基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性[J].大气科学,2017,41(1):189-201.
[16] 刘火霖,胡泽勇,程思,等.基于Noah-LSM模式和CoLM模式的青藏高原中部陆面过程模拟[J].冰川冻土,2016(6).
[17] 谢志鹏,胡泽勇,刘火霖,等.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象,2017,36(1):1-12.
[18] 许鲁君,刘辉志,徐祥德,等.WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J].气象学报,2018,76(6):125-137.
[19] 陈爱军,卞林根,刘玉洁,等.应用MODIS数据反演青藏高原地区地表反照率[J].南京气象学院学报,2009,32(2):222-229.
[20] Li M,Y Ma,Z Hu,et al.Snow distribution over the Namco lake area of the Tibetan Plateau[J].Hydrol.Earth Syst.Sci.,2009,13:2023-2030.
[21] Li M,Y Ma,L Zhong.The turbulence characteristics of atmospheric surface layer on the north slope of Mt.Everest region in the spring of 2005[J].Journal of the Meteorological Society of Japan,2012,90:185-193.
[22] LI Maoshan,MA Yaoming,MA Weiqiang,et al.Analysis of Turbulent Characteristics over the Northern Tibetan Plateau Area[J].Advanced in Atmospheric Sciences,2006,23(4):579-585.
[23] Zongyi F,Yujie L,Manyun L.The Research and Calculation of Surface Albedo over Tibetan Plateau from Satellite Data[J].Acta Meteorologica Sinica,1996,32(9):301-322.
[24] Wang K,Wang P,Liu J,et al.Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau[J].Boundary-Layer Meteorology,2005,116(1):117-129.
[25] Li M,Wolfgang Babel,Xuelong Chen,et al.A 3-year data set of sensible and latent heat fluxes derived using eddy-covariance measurements on the Tibetan Plateau[C].Theor.Appl.Climatol.,2014.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(03):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(03):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[3]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(03):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[4]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(03):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[5]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(03):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[6]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(03):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[7]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(03):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[8]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(03):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[9]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(03):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[10]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(03):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[11]苏传程,毛文书,师春香,等.多种降水融合产品对“苏迪罗”台风的监测效果对比[J].成都信息工程大学学报,2016,(06):614.
SU Chuan-cheng,MAO Wen-shu,SHI Chun-xiang,et al.Assessment of the Rainfall Monitoring of Typhoon
Soudelor by Multiple Precipitation Products[J].Journal of Chengdu University of Information Technology,2016,(03):614.
[12]李肇洁,曾胜兰.基于WRF模式的成都地区热岛效应的模拟研究[J].成都信息工程大学学报,2016,(06):629.
LI Zhao-jie,ZENG Sheng-lan.The Research of Heat Island Effect in Chengdu based on WRF Model[J].Journal of Chengdu University of Information Technology,2016,(03):629.
[13]钟兰頔,朱克云,王炳赟,等.陡峭地形特大暴雨的雷达资料变分同化试验研究[J].成都信息工程大学学报,2017,(02):165.[doi:10.16836/j.cnki.jcuit.2017.02.010]
ZHONG Lan-di,ZHU Ke-yun,WANG Bing-yun,et al.An Analytical Study on the Radar Assimilation of
Extraordinary Rainstorm under Steep Terrain[J].Journal of Chengdu University of Information Technology,2017,(03):165.[doi:10.16836/j.cnki.jcuit.2017.02.010]
[14]程志刚,孙 晨,毛晓亮,等.城市化对成都地区夏季气候变化影响的数值模拟研究[J].成都信息工程大学学报,2016,(04):386.
CHENG Zhi-gang,SUN Chen,MAO Xiao-liang,et al.Simulation of the Impact of Urbanization on
Summer Climate in Chengdu[J].Journal of Chengdu University of Information Technology,2016,(03):386.
[15]陈玉蓉,宋美洋,侯劭禹,等.高原和盆地间山谷风对四川霾日变化的影响分析[J].成都信息工程大学学报,2019,(04):443.[doi:10.16836/j.cnki.jcuit.2019.04.018]
CHEN Yurong,SONG Meiyang,HOU Shaoyu,et al.Analysis of the Influence of Mountain-basin Wind between Plateau andBasin on the Diurnal Variations of Haze in Sichuan Province[J].Journal of Chengdu University of Information Technology,2019,(03):443.[doi:10.16836/j.cnki.jcuit.2019.04.018]
[16]魏永恒,范广洲.青藏高原土壤湿度对一次对流降水影响的昼夜对比分析[J].成都信息工程大学学报,2020,35(01):96.[doi:10.16836/j.cnki.jcuit.2020.01.013]
WEI Yongheng,FAN Guangzhou.Day and Night Comparison Analysis of the Effect of Soil Moisture on a Case of Convective Precipitation over Qinghai-Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2020,35(03):96.[doi:10.16836/j.cnki.jcuit.2020.01.013]
[17]李 贺,文小航,赵 娜.高精度曲面建模方法在气象要素场估测中的应用研究——以江西省为例[J].成都信息工程大学学报,2022,37(05):565.[doi:10.16836/j.cnki.jcuit.2022.05.013]
LI He,WEN Xiaohang,ZHAO Na.Research on Application of High Accuracy Surface Modeling Method in the Estimation of Meteorological Elements Field——Taking Jiangxi Province as an Example[J].Journal of Chengdu University of Information Technology,2022,37(03):565.[doi:10.16836/j.cnki.jcuit.2022.05.013]
备注/Memo
收稿日期:2019-07-08 基金项目:国家重点研发计划项目(2018YFC1505702); 国家自然科学基金资助项目(41675106)