ZHAO Qiuyun,WEI Le,SHU Hongping,et al.Adaptive Technology Framework of Manufacturing Cloud Service in Cloud Manufacturing Environment[J].Journal of Chengdu University of Information Technology,2021,36(01):45-50.[doi:10.16836/j.cnki.jcuit.2021.01.008]
云制造环境下制造云服务自适应技术框架
- Title:
- Adaptive Technology Framework of Manufacturing Cloud Service in Cloud Manufacturing Environment
- 文章编号:
- 2096-1618(2021)01-0045-06
- 分类号:
- TP391
- 文献标志码:
- A
- 摘要:
- 制造云服务自适应通过“感知-决策-执行”过程,对出现的各种异常进行处理,是保证制造任务顺利执行的一项重要技术。结合云制造的特点,探讨制造云服务自适应的内涵,包括定义、特点和内容。提出由数据源层、数据感知层、数据分析决策层和动作执行层组成的制造云服务自适应技术框架。特别是提出一个事件驱动的制造云服务自适应模型,明确自适应流程,对云制造环境下的制造云服务自适应调整具有重要的借鉴意义。
- Abstract:
- Manufacturing cloud service adaptively processes various exceptions through the process of “perception-decision-execution”. It is an important technology to ensure the execution of manufacturing tasks smoothly. Combined with the characteristics of cloud manufacturing, the connotation of cloud manufacturing service adaptiveness was discussed, including the definitions, characteristics and contents. A manufacturing cloud service adaptive technology framework was proposed. The framework consists of the data source layer, data awareness layer, data analysis decision layer and the execution layer. In particular, a service adaptive model of event-driven manufacturing cloud was built to clarify the adaptive process. The model has important significance for the adaptive adjustment of manufacturing cloud services in cloud manufacturing environment.
参考文献/References:
[1] 李伯虎,张霖,王时龙,等.云制造——面向服务的网络化制造新模式[J].计算机集成制造系统,2010,16(1):1-7.
[2] 李伯虎,张霖,任磊,等.再论云制造[J].计算机集成制造系统,2011,17(3):449-457.
[3] 李伯虎,张霖,任磊,等.云制造典型特征、关键技术与应用[J].计算机集成制造系统,2012,18(7):1345-1356.
[4] 陶飞,张霖,郭华,等.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统,2011,17(3):477-486.
[5] 马文龙,赵燕伟,王万良.制造云服务组合异常自适应调整方法[J].中国机械工程,2016,27(6):778-784.
[6] 杨小桃,徐宣国,刘开.制造云服务组合的自适应异常处理框架[J].机械与电子,2016,34(11):3-6.
[7] 高波.面向机加工的云制造服务组合自适应调整研究[D].重庆:重庆大学,2018.
[8] 周佳军.面向智慧云制造资源服务组合的若干进化算法研究[D].广州:华南理工大学,2018.
[9] 刘波,刘卫宁,孙棣华,等.自适应制造资源动态服务组合与优化框架[J].中国机械工程,2012,23(10):1187-1193.
[10] 章振杰,张元鸣,徐雪松,等.基于动态匹配网络的制造服务组合自适应方法[J].软件学报,2018,29(11):3355-3373.
[11] 任磊,任明仑.基于情景感知的制造组合服务自适应决策机制[J].控制与决策,2019,34(6):1277-1285.
[12] Yi Que,Wei Zhong,Hailin Chen,et al.Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing[J].Int J Adv Manuf Technol,2018,96:4455-4465.
[13] Bin Xu,Jin Qi,Xiaoxuan Hu,Kwong-Sak Leung,et al.Self-adaptive bat algorithm for large scale cloud manufacturing service composition[J].Peer-to-Peer Netw.Appl,2018,11:1115-1128.
[14] 赵秋云,魏乐,舒红平.基于质量评价及需求匹配的制造设备云服务选择[J].计算机应用研究,2015,32(11):3387-3390.
[15] 赵秋云,魏乐,舒红平.云制造环境下制造设备云服务异常处理模型[J].图学学报,2014,35(6):840-846.
[16] 赵秋云,魏乐,舒红平.基于业务流程的制造云服务组合模型[J].计算机应用,2014,34(11):3100-3103.
[17] 魏乐,赵秋云,舒红平.云制造环境下基于QoS的组合云服务自适应调整[J].兰州大学学报(自然科学版),2012,48(4):98-104.
[18] 丁博,王怀民,史殿习.构造具备自适应能力的软件[J].软件学报,2013,24(9):1981-2000.
[19] 吕佑龙,张洁.基于大数据的智慧工厂技术框架[J].计算机集成制造系统,2016,22(11):2691-2697.
备注/Memo
收稿日期:2020-08-10
基金项目:四川省应用基础研究资助项目(2018JY0506); 四川省教育厅青年基金重点资助项目(16ZA0208)