YANG Meng,NI Xue,NI Changjian,et al.Study on Generalized Pareto Distribution Model of Annual Extreme Precipitation in Chengdu Economic Zone[J].Journal of Chengdu University of Information Technology,2021,36(01):95-100.[doi:10.16836/j.cnki.jcuit.2021.01.015]
成都经济区极端降水广义帕累托分布模型研究
- Title:
- Study on Generalized Pareto Distribution Model of Annual Extreme Precipitation in Chengdu Economic Zone
- 文章编号:
- 2096-1618(2021)01-0095-06
- Keywords:
- atmospheric science; extreme precipitation; Chengdu economic zone; generalized pareto distribution; return period
- 分类号:
- P426.6
- 文献标志码:
- A
- 摘要:
- 为研究成都经济区极端降水的概率分布特征,利用成都经济区(绵阳、德阳、遂宁、成都、资阳、雅安、眉山、乐山)8个站点1960-2018年的逐日降水量资料,选取第99个百分位值为极端降水量的阈值,采用广义帕累托分布模型(GPD)对成都经济区极端降水事件进行拟合并计算其重现期降水量。将极端降水的理论累积概率与实测概率进行了对比,发现成都经济区8个测站极端降水事件符合GPD分布。研究结果表明,成都经济区极端降水在不同重现期内空间分布特征基本一致,只是数值有所不同; 具体表现为乐山、雅安和绵阳极端降水量最大,成都、德阳、眉山和遂宁次之,资阳市最小,总体呈现向东南逐渐减小的趋势。
- Abstract:
- To study the spatial distribution characteristic of the probability of extreme precipitation in the Chengdu Economic Zone(CEZ), we analyze the daily precipitation data from 1960 to 2018 which come from eight stations(Mianyang, Deyang, Suining, Chengdu, Ziyang, Ya’an, Meishan and Leshan)in the CEZ. The 99th percentile value is defined as the extreme precipitation threshold and we choose the generalized Pareto distribution(GPD)model to fit extreme precipitation events and calculate precipitation return period in the CEZ. Comparing the theoretical cumulative probability of extreme precipitation with the measured probability, it is foun d that the extreme precipitation events from eightstations conform to the GPD. The results indicate it’s much the same for the spatial distribution characteristics of extreme precipitation in different return periods in the CEZ, only the values of precipitation are different. Leshan, Ya’an and Mianyang have the highest extreme precipitation, followed by Chengdu, Deyang, Meishan and Suining, Ziyang is the smallest one. On the whole, it shows a gradual decrease precipitation pattern from other directions to the southeast in the CEZ.
参考文献/References:
[1] 翟盘茂.气候变化与气象灾害[C].气候变化与生态环境研讨会论文集,2003:108-112.
[2] Groisman P Y,Karl T R,Easterling D R,et al.Changes in the probability of heavy precipitation:important indicators of climatic change, Weather and Climate Extremes
[M].Springer,1999:243-283.
[3] Osborn T J,Hulme M,Jones P D,et al. Observed trends in the daily intensity of United Kingdom precipitation[J].International Journal of Climatology,2000,20(4):347-364.
[4] Yamamoto R.Long-term intensification of extremely heavy rainfall intensity in recent 100 years[J].World Resources Review,1999,11(2):271-281.
[5] 严中伟,杨赤.近几十年中国极端气候变化格局[J].气侯与环境研究,2000,5(3):267-272.
[6] Zhai P,Zhang X,Wan H,et al.Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China[J].Journal of Climate,2005,18(7):1096-1108.
[7] 陈海山,范苏丹,张新华.中国近50a极端降水事件变化特征的季节性差异[J].大气科学学报,2009,32(6):744-751.
[8] 蔡敏,丁裕国,江志红.我国东部极端降水时空分布及其概率特征[J].高原气象,2007,26(2):309-318.
[9] 佘敦先,夏军,张永勇,等.近50年来淮河流域极端降水的时空变化及统计特征[J].地理学报,2011,66(9):1200-1210.
[10] 任照环,倪长健.基于复合极值模型的暴雨重现期研究:以川东北地区为例[J].西南师范大学学报(自然科学版),2014,39(5):131-137.
[11] 任照环,倪长健,周书华.二维复合极值模型在暴雨多变量联合分布中的应用[J].成都信息工程学院学报,2014,29(3):302-307.
[12] 王轩,尹占娥,迟潇潇.基于情景模拟的长江三角洲极端降水风险评价[J].地球环境学报,2015,6(1):11-16.
[13] 蔡敏,丁裕国,江志红.L-矩估计方法在极端降水研究中的应用[J].气象科学,2007(6):597-603.
[14] 王明杰.基于GIS的成都经济区区域合作层次划分研究[J].经济研究导刊,2011(30):146-150.
[15] 丁裕国.极端气候研究方法导论:诊断及模拟与预测[M].北京:气象出版社,2009.
[16] Iii J P.Statistical Inference Using Extreme Order Statistics[J].Ann.Statist.,1975,3(1):119-131.
[17] Hosking J R M,Wallis J R.Parameter and Quantile Estimation for the Generalized Pareto Distribution[J].Technometrics,1987,29(3):339-349.
[18] Davison A C,Smith R L.Models for exceedances over high thresholds[J].Journal of the Royal Statistical Society:Series B,1990,52(3):393-425.
[19] Abild J,Andersen E,Rosbjerg D,et al.The climate of extreme winds at the Great Belt,Denmark[J].Journal of Wind Engineering,1992,41(1-3):521-532.
[20] 刘吉峰,丁裕国,江志红.全球变暖加剧对极端气候概率影响的初步探讨[J].高原气象,2007(4):837-842.
[21] 江志红,丁裕国,朱莲芳,等.利用广义帕雷托分布拟合中国东部日极端降水的试验[J].高原气象,2009,28(3):573-580.
[22] Coles S.An Introduction to Statistical Modeling of Extreme Values[J].Technometrics,2001,44(4):397-397.
[23] 程炳岩,丁裕国,张金铃,等.广义帕雷托分布在重庆暴雨强降水研究中的应用[J].高原气象,2008(5):1004-1009.
[24] 周长艳,肖安,高文良.2004-2013年“雨城”雅安的降水日变化特征分析[J].冰川冻土,2015,37(6):1524-1533.
[25] 潘品言,徐强.乐山市63年间降水基本特征及变化规律分析[J].科技资讯,2016,14(15):145-147.
[26] 熊卫东,韦虹,熊瑶,等.资阳市近六十年降水特征分析[J].南方农业,2019,13(2):181-182.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(01):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(01):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(01):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(01):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(01):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(01):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(01):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(01):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(01):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
备注/Memo
收稿日期:2019-12-25
项目基金:国家重点研发计划资助项目(2018YFC0214004、2018YF C1506006):四川省科技厅重点研发资助项目(2018SZ0287)