ZOU Lin,LIU Liping.Study on the Method of Retrieval Liquid Water Content from Ka/Ku Dual-wavelength Millimeterwave Radar Doppler Spectral Data[J].Journal of Chengdu University of Information Technology,2021,36(02):129-137.[doi:10.16836/j.cnki.jcuit.2021.02.001]
Ka/Ku双波段毫米波雷达功率谱数据反演液态水含量方法研究
- Title:
- Study on the Method of Retrieval Liquid Water Content from Ka/Ku Dual-wavelength Millimeterwave Radar Doppler Spectral Data
- 文章编号:
- 2096-1618(2021)02-0129-09
- Keywords:
- dual-wavelength cloud radar; liquid water content; echo strength deviation; small particles; least squares method; microwave radiometer
- 分类号:
- TN959.4
- 文献标志码:
- A
- 摘要:
- 单波段雷达用Z-LWC关系反演液态水因不同降水类型反演的液态水含量相差较大。利用双波段雷达回波强度偏差反演液态水含量,直接将双波段雷达基数据回波强度相减的差值不仅包括了衰减的偏差也包括散射不同带来的偏差。因此,利用双波段雷达功率谱数据经过小粒子选择计算受Mie散射影响小的粒子,用最小二乘法计算DWR(dual wavelength ratio)的变化率,反演液态水含量和液态水积分总量,将双波段雷达基数据和功率谱数据反演结果与微波辐射计的作对比,结果表明:(1)经过小粒子选择,去掉了双波段雷达的回波强度因散射不同带来的偏差。(2)在高度较低时双波段雷达基数据和功率谱数据经过小粒子选择反演的液态水含量有着较大区别。随着高度的增加,反演的液态水含量比较接近。(3)双波段雷达基数据和功率谱数据反演的液态水含量与微波辐射计进行定性分析,变化趋势能够达到较为一致,微波辐射计液态水含量较强的区域,两者反演的液态水含量也相应较大。(4)双波段雷达基数据和功率谱数据反演的液态水积分总量和微波辐射计的液态水积分总量随着时间的变化趋势较为一致,但双波段雷达功率谱数据总体程度小于基数据反演的液态水积分,双波段雷达基数据与功率谱数据反演的液态水积分总量总体小于微波辐射计的液态水积分总量值。
- Abstract:
- When a single-band radar uses the Z-LWC relationship to retrieve liquid water content, the content of liquid water retrieved by different precipitation types will vary greatly. Using dual-band radar echo intensity deviation to retrieve the liquid water content, the difference obtained by directly subtracting the dual-band radar base data echo intensity includes not only the deviation of attenuation but also the deviation caused by different scattering. Therefore, this paper uses the dual-band radar doppler spectrum data to calculate the particles that are less affected by Mie scattering through small particle selection, calculates the rate of change of DWR(dual wavelength ratio)using the least square method, and retrieves the liquid water content and total liquid water integral, the results of the dual-band radar base data and doppler spectrum data are compared with the microwave radiometer. The results show that:(1)After selecting small particles, the echo intensity of the dual-band radar is removed due to different scattering bias.(2)When the altitude is low, there is a big difference between the liquid water content of the dual-band radar base data and the doppler spectrum data after small particle selection.With the altitude increases, the retrieved liquid water content is closer.(3)The liquid water content retrieved from dual-band radar base data and doppler spectrum data is qualitatively analyzed with the microwave radiometer, and the change trend can be more consistent. In areas where the liquid water content is strong, the liquid water content retrieved by the dual-wavelength is correspondingly larger.(4)The total liquid water integration retrieved by the dual-band radar base data and doppler spectrum data and the total liquid water integration retrieved by the microwave radiometer the change trend of the quantity over time is relatively consistent, but the overall degree of the dual-band radar doppler spectrum data is less than the liquid water integration retrieved from the base data, and the total liquid water integration retrieved from the dual-band radar base data and power spectrum data is generally less than the microwave radiation total liquid water integral value.
参考文献/References:
[1] Atlas D.The estimation of cloud parameters by radar[J].J Meter,1954,11(4):309-317.
[2] Sauvageot H,Omar J.Radar reflectivity of cumulus clouds[J].Atmos Ocean Technol,1987,4(2):264-272.
[3] Fox N I,Illingworth A J.The retrieval of stratocumulus cloud properties by groud-based cloud radar[J].Appl Meteor,1997,36(5):485-492.
[4] Miles N L,Verlinde J,Clothiaux E E.Cloud Droplet Size Distributions in Low-Level Stratiform Clouds[J].Journal of Atmospheric Sciences,2000,57(2):295-311.
[5] Krasnov O A,Russchenberg H W J.Reteieval of water cloud microphysical parameters from simultaneous RADAE and LIDAR measurements[J].International Unin of Radio Science,2002,20(3):101-115.
[6] Vivekanandan J,Zhang G,Politovich M K.An Assessment of Droplet Size and Liquid Water Content Derived from Dual-Wavelength Radar Measurements to the Application of Aircraft Icing Detection[J].Journal of Atmospheric & Oceanic Technology,2000,18(11):1787-1798.
[7] Meneghini R,Kozu T,Kumagai H,et al.A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean[J].Journal of Atmospheric and Oceanic Technology,1992,9(4): 364-382.
[8] Mardiana R,Iguchi T,Takahashi N.A dual-frequency rain profiling algorithm without the use of the surface reference technique[J].IEEE Trans.Geosci.Remote Sens.,2004,42:2214-2225.
[9] Williams J K,Vivekanandan J.Sources of Error in Dual-Wavelength Radar Remote Sensing of Cloud Liquid Water Content[J]. Journal of Atmospheric & Oceanic Technology,2007,24(8):1317-1336.
[10] Hogan R J,Gaussiat N,Illingworth A J.Stratocumulus Liquid Water Content from Dual-Wavelength Radar[J].Journal of Atmospheric & Oceanic Technology,2005,22(8):1207-1218.
[11] Adhikari N B,Iguchi T,Seto S,et al.Rain Retrieval Performance of a Dual-Frequency Precipitation Radar Technique With Differential-Attenuation Constraint[J].IEEE Transactions on Geoscience & Remote Sensing,2007,45(8):2612-2618.
[12] Gaussiat,Nicolas,Sauvageot.Cloud Liquid Water and Ice Content Retrieval by Multiwavelength Radar[J].Journal of Atmospheric & Oceanic Technology,2003,20(9):1264-1275.
[13] Ellis S M,Vivek_Anandan J.Liquid water content estimates using simultaneous S and Ka band radar measurements[J].Radio ence,2011,46(2).
[14] 谢晓林,刘黎平.云雷达联合微波辐射计反演液态水含量的算法[A].中国气象学会.第33届中国气象学会年会S18雷达探测新技术与应用[C].中国气象学会:中国气象学会,2016:16.
[15] 黄兴友,张帅,李盈盈,等.云参数的两种地基雷达反演方法对比研究[J].气象科学,2019,39(5):608-616.
[16] 郑晨雨,刘黎平.Ka/Ku双波段云雷达探测云降水滴谱和空气垂直运动速度的能力模拟分析[J].高原气象,2020,39(3):543-559.
[17] 马宁堃,刘黎平,郑佳峰.利用Ka波段毫米波云雷达功率谱反演云降水大气垂直速度和雨滴谱分布研究[J].高原气象,2019,38(2):325-339.
[18] 刘黎平,郑佳锋.不同波段垂直指向雷达功率谱密度对比[J].应用气象学报,2017,28(4):447-457.
[19] 陈英英,杨凡,徐桂荣,等.基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析[J].暴雨灾害,2015,34(4):85-93.
相似文献/References:
[1]崔延星,刘黎平,何建新,等.基于云雷达、C波段连续波雷达和激光云高仪融合数据的华南夏季云参数统计分析[J].成都信息工程大学学报,2018,(03):242.[doi:10.16836/j.cnki.jcuit.2018.03.004]
CUI Yan-xing,LIU Li-ping,HE Jian-xin,et al.Statistical Analysis of South China Summer Cloud Parameters based onCloud Radar,C-band Continuous Wave Radar and Ceilometer Fusion Data[J].Journal of Chengdu University of Information Technology,2018,(02):242.[doi:10.16836/j.cnki.jcuit.2018.03.004]
[2]谢晓林,刘黎平.基于云雷达和微波辐射计反演混合云液态水含量的算法[J].成都信息工程大学学报,2016,(02):130.
XIE Xiao-lin-,LIU Li-ping.An Algorithm to Retrieve Liquid Water Content Profiles of Mixed Cloud
based on Cloud Radar and Microwave Radiometer[J].Journal of Chengdu University of Information Technology,2016,(02):130.
[3]程 鹏,樊 旭,胡晓辉,等.基于微波辐射计的张掖地区水汽、液态水变化特征分析[J].成都信息工程大学学报,2021,36(02):230.[doi:10.16836/j.cnki.jcuit.2021.02.016]
CHENG Peng,FAN Xu,HU Xiaohui,et al.Analysis of Water Vapor and Liquid Water Variation Characteristics in Zhangye Area with Microwave Radiometer Data[J].Journal of Chengdu University of Information Technology,2021,36(02):230.[doi:10.16836/j.cnki.jcuit.2021.02.016]
备注/Memo
收稿日期:2020-12-29
基金项目:国家自然科学基金资助项目(41875036)