PDF下载 分享
[1]张 婕,邓成梁,谢盛华,等.基于深度学习的颈动脉粥样硬化斑块成分识别[J].成都信息工程大学学报,2021,36(02):143-148.[doi:10.16836/j.cnki.jcuit.2021.02.003]
 ZHANG Jie,DENG Chengliang,XIE Shenghua,et al.Carotid Atherosclerosis Plaque Recognition Algorithm based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(02):143-148.[doi:10.16836/j.cnki.jcuit.2021.02.003]
点击复制

基于深度学习的颈动脉粥样硬化斑块成分识别

参考文献/References:

[1] 胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.
[2] 赵媛,孙夏,丁明跃.一种基于深度学习的颈动脉斑块超声图像识别方法[J].中国医疗器械信息,2017(9).
[3] Virmani R,Kolodgie F D,Burke A P,et al.Atherosclerotic Plaque Progression and Vulnerability to Rupture Angiogenesis as a Source of Intraplaque Hemorrhage[J].Arteriosclerosis Thrombosis & Vascular Biology,2005,25(10):2054.
[4] Gillard J,Graves M,Hatsukami T,et al.Carotid disease:the role of imaging in diagnosis and management[M].Cambridge University Press,2006.
[5] 罗俊,王淑珍.颈动脉粥样硬化与心血管疾病的关系[J].心血管病学进展,2011,32(2):236-238.
[6] 贾伟华,田桂玲.颈动脉斑块稳定性的研究进展[J].国际脑血管病杂志,2004(2):145-148.
[7] Zahalka A,Fenster A.An automated segmentation method for three-dimensional carotid ultrasound images[J].Physics in Medicine & Biology,2001,46(4):1321-1342.
[8] G E H.Reducing the dimensionality of data with neural networks[J].Science(New York,N.Y.),2006(313):5786.
[9] Hinton G E,Osindero S,Teh Y-W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2006,18(7):1527-1554.
[10] Menchón-Lara R M,Sancho-Gómez J L,Bueno-Crespo A.Early-stage atherosclerosis detection using deep learning over carotid ultrasound images[J].Applied Soft Computing,2016,49:616-628.
[11] 孙夏,吴蔚,吴鹏,等.基于卷积神经网络的颈动脉斑块超声图像特征识别[J].中国医疗器械信息,2016,22(9):4-8.
[12] Lu F,Wu F,Hu P,et al.Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J].International Journal of Computer Assisted Radiology & Surgery,2017,12(2):171-182.
[13] Gao J,Wang Y-Y,Liu Y.Application of virtual histological intravascular ultrasound in plaque composition assessment of saphenous vein graft diseases[J].Chinese medical journal,2019,132(8):1.
[14] Chollet F.Xception:Deep Learning with Depthwise Separable Convolutions[J].IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016,195:1800-1807.
[15] Chen L C,Papandreou G,Schroff F,et al.Rethinking Atrous Convolution for Semantic Image Segmentation[J].arXiv,2017,17(6).
[16] 袁立,袁吉收,张德政.基于DeepLab-v3+的遥感影像分类[J].激光与光电子学进展,2019(15):236-243.
[17] Howard A G,Zhu M,Chen B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv,2017,17(4):04861.

相似文献/References:

[1]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(02):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[2]杨 婞,邹书蓉,张洪伟.基于改进的量子行为粒子群聚类算法的彩色图像分割[J].成都信息工程大学学报,2016,(增刊1):14.

备注/Memo

收稿日期:2020-09-30
基金项目:四川省科技计划资助项目(2018JY0649)

更新日期/Last Update: 2021-04-30